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Abstract1

Simultaneously localizing one’s position and construct-2

ing a map of the surrounding environment are fundamen-3

tal processes underpinning model-based navigation, rea-4

soning, and decision-making. The brain achieves this5

ability through two complementary strategies: inferring6

one’s states in the environment from sensory inputs and7

updating previous states through path integration. How-8

ever, how these two sources of information interact re-9

mains largely unknown. Here, we introduce EHSLAM, a10

mechanistic computational framework of the entorhinal-11

hippocampal system. By integrating sensory inputs and12

path-integrative signals, EHSLAM learns localized repre-13

sentations of space as place cells in the hippocampus, by14

updating synaptic connections in the network after en-15

countering a novel environment. These phenomena are16

interrelated and mutually reinforce during spatial updates17

in this framework. Furthermore, EHSLAM captures key18

findings from empirical data, including place cell remap-19

ping and grid cell realignment across distinct environ-20

ments, as well as making testable predictions. This com-21

putational framework provides a mechanistic understand-22

ing of the neural dynamics involved in spatial navigation23

and memory.24
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The computational model28

Inputs to EHSLAM consist of two components: self-motion-29

based information and landmark-based sensory information.30

Self-motion information includes the animal’s linear and angu-31

lar velocities, which are used to update the animal’s position32

and head direction through linear and angular path integra-33

tion. Specifically, the angular velocity signal activates head34

direction cells, which combines speed information to activate35

grid cells in MEC (Figure 1A).36

Emergence of place-cell tuning and a spatial37

map of the environment in the hippocampus38

We first showed that EHSLAM can learn place-cell tuning in39

the hippocampus as the agent freely explores the environ-40

ment. Before learning, hippocampal neurons do not show lo-41

calized spatial preference since synaptic connections to the42

HPC and within the hippocampus have not yet been learned43

(Figure 2A). After synaptic updates while the agent navigates44

the environment, some neurons develop localized spatial tun-45

ing as place cells (Figure 2A). Among the simulated 200046
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Figure 1: The mechanistic computational framework. A, the
entorhinal-hippocampal systems model. Multiple grid modules in
MEC receive self-motion input including both angular information
(via head direction cells, HDCs) and speed information. The hip-
pocampus receives landmark-based sensory information via allocen-
tric landmark vector cells (Allo-LVCs) by combining input from ego-
centric landmark vector cells (Ego-LVCs) and allocentric directional
information from HDCs. Apart from direct angular velocity input,
HDCs also receive landmark-based sensory information from land-
mark bearing cells (LBCs) by combining position information from
the hippocampus. Grey arrows represent fixed synaptic weights and
blue arrows represents learnable weights. B, two example egocen-
tric landmark vector cells (bottom) tuned to different distances and
egocentric angles of a landmark in the field of view (top). C, the HDC
ring attractor network (top) and two example HDCs (bottom). D, the
grid cell continuous attractor network with a twisted torus structure
(top) and two example GCs (bottom).

HPC neurons, nearly 40% develop clear place-cell-like tun-47

ing, as measured by the degree of localized firing of each cell48

(Figure 2B). This is similar to the proportion of place cells in49

CA1/CA3 pyramidal neurons reported in empirical data (ap-50

proximately 30%-50%) Thompson & Best (1989). The reason51

only a fraction of HPC neurons develop as place cells is due52

to competitive Hebbian plasticity within the HPC. This mecha-53

nism allows EHSLAM to represent multiple spatial maps with54

different sets of neurons, as discussed later in the context of55

remapping.56

The development of place-cell-like activity in the hippocam-57
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Figure 2: Emergence of place-cell tuning and a spatial map of the
environment in the hippocampus.

pus does not necessarily mean that it forms a spatial map of58

the environment. To form a spatial map, these cells need to59

encode an internal representation of the agent’s actual posi-60

tion. To further demonstrate this, we sorted place cells that61

emerged after learning by their preferred firing location in the62

environment, and visualized the population activity. We found63

that before learning, the population activity does not reflect64

the actual position of the agent (Figure 2C, left), whereas af-65

ter learning, place cells closely reflect the actual position with66

higher firing rate in cells coding for a space near the agent’s67

actual position (Figure 2D, left). We further decoded the in-68

ternal position from the population activity of place cells that69

emerged over a running period, and found that after learning,70

the decoded position closely aligns with the agent’s actual po-71

sition (Figure 2D, right), but not before learning (Figure 2C,72

right).73

Global remapping in place cells and74

realignment in grid cells75

It has been shown that when place cells are recorded in envi-76

ronments of different shapes (e.g., circular and square), some77

are active in one environment but silent in the other, while78

others are active in both but at different locations. This phe-79

nomenon, known as global remapping, allows the hippocam-80

pus to encode distinct spatial representations for different en-81

vironments Muller & Kubie (1987); Bostock et al. (1991); Lever82

et al. (2002); Leutgeb et al. (2005); Wills et al. (2005). As83

expected, a subset of hippocampal neurons was recruited84

as place cells, forming a distinct spatial map for each en-85

vironment (Figure 3A). Specifically, 459/2000 neurons were86

recruited as place cells for the square arena, while 469 out87

of 2000 were recruited as place cells for the circular arena.88

Among them, 191 neurons were active in both environments89

but at different firing locations. Importantly, the firing fields90

of these shared place cells did not exhibit coordinate shifts91

between the two environments (Figure 3B), suggesting that92

remapping occurred in a relatively random manner across the93

two learned environments.94
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Figure 3: Global remapping in place cells and realignment in grid
cells.

In contrast, unlike global remapping in place cells, grid cells95

show realignment in response to different environments Fyhn96

et al. (2007). Specifically, the triangular firing fields of grid97

cells move in concert between the two environments, with grid98

spacing and grid orientation preserved. Based on the two en-99

vironments we simulated (a square one and a circular one),100

we checked the tuning properties of grid cells in EHSLAM.101

First, grid cells display triangular grid-like firing patterns in102

both environments (Figure 3C). The cross-correlogram of the103

firing fields of individual grid cells also forms triangular grid-104

like patterns, suggesting that grid spacing, orientation, and105

spatial phase distribution were preserved between the two106

environments (Figure 3C). Importantly, peaks of the cross-107

correlograms are offset from the origin consistently across108

all grid cells (with the same distance and angle from the ori-109

gin) (Figure 3D), suggesting that grid cell maps realigns with110

changes in the environment without losing its intrinsic spatial111

phase structure Fyhn et al. (2007).112

Conclusion113

In this study, we built a mechanistic computational frame-114

work for the entorhinal-hippocampal system with biologically115

plausible constraints. This model integrates both self-motion116

information and landmark-based sensory information from117

two complementary pathways via synaptic plasticity. Future118

work will extend this model to more complex navigational119

paradigms, such as the delayed matching-to-place task in120

a watermaze setup Foster et al. (2000), environments with121

barriers Widloski & Foster (2022), or tasks involving multiple122

fixed reward locations Boccara et al. (2019). Such extensions123

would allow testing the responses of various cell types and124

network dynamics, including replay, and provide mechanistic125

explanations for a broader range of empirical observations.126
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