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Abstract 
Noise in value representations presents decision 
scientists with an identification problem. We 
measured trial-wise valuation precision using 
willingness-to-pay ranges for lotteries, where the 
range width indicates perceived valuation 
imprecision (uncertainty). Using a Bayesian 
inference model, we isolated distinct prior and 
likelihood components of valuation imprecision 
affecting the generation of value representations. 
Furthermore, upregulating norepinephrine and 
dopamine, but not acetylcholine increased valuation 
precision through these distinct components. 
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Introduction 
Decision-making involves selecting the option with the 
highest estimated value. From a Bayesian perspective 
(Barretto-García et al., 2023; Khaw et al., 2021; Polanía 
et al., 2019; Woodford, 2020), an option with value  ν
elicits a noisy (neural) response  (measurement), drawn 𝑟
from a likelihood (probability) distribution . The 𝑝(𝑟|𝑣)
brain computes a posterior by applying Bayes' rule, 
combining value encoding noise with prior beliefs about 
possible value distributions. Thus, valuation is inherently 
stochastic, involving estimates and precision. Both the 
prior—such as a bias toward high values or a wider 
spread of possible values—and the value encoding 
noise affect the value estimation. 

Despite its importance, noise and its converse, 
precision, are hard to investigate and traditional methods 
failed to measure them within single trials. Additionally, 
while dopamine (DA), norepinephrine (NE), and 
acetylcholine (ACh) are theorized to reduce neural noise 
and improve precision in general (Parr & Friston, 2017; 
Yu & Dayan, 2005), causal relationships have yet to be 
established. 

We addressed these gaps with a range-based 
valuation task measuring trial-wise precision and a 
Bayesian inference model isolating imprecision 
components. In a randomized, placebo-controlled, 
double-blind design, we tested how reboxetine (NE 

enhancer), methylphenidate (DA enhancer), and nicotine 
(ACh enhancer) affect value precision. 

Methods 

Range-based valuation task  
In the range-based valuation task (Figure 1A), 
participants reported the minimum and maximum 
prices they were willing to pay (WTP) to play 
lotteries. The range—the difference between min 
and max WTP—directly measured perceived value 
precision, with wider ranges indicating greater 
imprecision. A modified Becker-DeGroot-Marschak 
procedure (Becker et al., 1964; Dost & Wilken, 2012; 
Wang et al., 2007) ensured truthful reporting. This 
task provided direct, reliable, and trial-wise 
measures of both subjective value and valuation 
imprecision. 

Computational modeling  
We assume that the noisy response  to an 𝑟
outcome’s value follows a Gaussian distribution with 

mean  (the true outcome value) and variance . ν σ
ν
2

Because value is a magnitude variable, we allow the 
noise to increase with value, modeled as: 

, where  and  are σ
ν
2 = 𝑆 * 𝑣 + 𝐵 𝑆 𝐵

individual-specific free parameters. Higher   implies 𝑆
more noise at higher values, while a higher  𝐵
indicates greater overall noise in the (neuronal) 
value encoding. 

The decision maker infers the value of each 
outcome by computing the posterior of the true value 
through Bayesian inference ∝ . 𝑝(𝑣|𝑟) 𝑝(𝑣
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The prior  is assumed to be a Gaussian 𝑝(𝑣
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Critically, the model assumes that decision 
makers first independently infer the value of each 
outcome and  of a lottery with two possible 𝑣

1
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2

outcomes, leading to two posterior distributions 
(Figure 1B). Then they combine the two posteriors 
distributions as a mixture distribution 
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probabilities associated with each outcome (Figure 
1C). The mean of this mixture distribution  ( )  is µ

𝑚𝑖𝑥

the  WTP (subjective value) of the lottery. The max 
and min WTP participants actually reported in our 
task correspond to the WTP plus and minus the 
uncertainty (standard deviation) of the mixture 
distribution, 

Moreover, the reported WTP range (the 
difference between max and min WTP) can be 
viewed as a confidence interval (CI): µ

𝑚𝑖𝑥
±  𝐶 * σ

𝑚𝑖𝑥

, in which  is a free scaling factor, a threshold 𝐶
relating the uncertainty of the mixture distribution to 
the range participants actually report. Some 
participants might be more conservative, reporting 
95% CIs, while others might be less conservative, 
reporting 60% CIs. Response noise is a free 
parameter . Therefore, our model can decompose σ

𝑅

reported value imprecision into value representation 
(affected by prior and value encoding noise) and 
response tendencies (threshold and response 
noise), allowing us to test how different 
neuromodulators affect these distinct processes. 

 
Figure 1: Range-based valuation task and valuation 
imprecision. Participants reported the min and max 
prices they are willing to pay for a lottery (e.g., 50% 
chance of 50 points, 50% chance of 130 points). 
This method captures both subjective value and 
valuation uncertainty. Example posterior 
distributions: low precision range, 40-110 points 
(mean WTP of 75, imprecision of 70); high precision 
range, 65-85 points (same mean, imprecision of 20). 

In the Bayesian model, prior , value 𝑁(µ
0
,σ

µ
2 )

encoding noise ( ) and decision σ
ν
2 = 𝑆 * 𝑣 + 𝐵 

threshold  are estimated for each individual. Noisier 𝐶
value representations and higher thresholds lead to 
wider reported ranges. 

Results and Discussion 

The range-based valuation task was validated in 
Experiment 1(N=25): reported WTP was higher for 
lotteries with higher expected value, WTP from the 
traditional point-based method matched that of the 
range-based method, WTP variability was higher for 
lotteries with larger ranges, and the WTP range was 
negatively correlated with confidence (Figure 2A). 

 To test if psychoactive substances reduce 
perceived valuation imprecision, in Experiment 2, 
participants received 4 mg reboxetine, 20 mg 
methylphenidate, 2 mg nicotine, or placebo, with 40 
participants per group. We used a Bayesian 
regression model on 157 participants. We fitted 
Bayesian inference models individually, and our 
model fitted the data well (Figure 2B). Moreover, 
both methylphenidate (MPH; BF = 56.55) and 
reboxetine (RBX; BF = 19.3) reduced WTP range 
compared to placebo (Figure 2C). Modeling revealed 
that MPH reduced prior mean (BF = 20.86), and 
tended to reduce the decision threshold (BF = 𝐶 
16.28).  By contrast, RBX reduced both prior 
variance (BF = 73.77) and the value encoding nois  𝐵
(BF = 26.97). Together, these findings suggest that 
DA and NE increase valuation precision (perceived 
certainty) through different mechanisms: DA lowered 
the conservative decision criterion, becoming more 
certain overall across noise conditions, while NE 
reduces overall noise in value representation.  

 
Figure 2: A. WTP range (perceived valuation 
imprecision) was negatively correlated with reported 
confidence. B. WTP range was higher for lotteries 
with higher EV, a pattern captured by our Bayesian 
inference model. C. WTP range across drug groups. 
The line inside each box represents the median, and 
the box limits denote the 25th and 75th percentiles. 
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