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Abstract 

 
Under popular ‘predictive coding’ accounts in 
cognitive neuroscience, the brain continuously 
generates predictions about sensory input and 
integrates them with incoming signals in order to 
form a percept. There is evidence that these 
perceptual predictions and corresponding 
prediction errors can be entirely implicit. However, 
we are selectively aware of some violations of 
objective statistical structure - triggering 
conscious experiences of surprise. In order to 
investigate the influence of this subjective 
awareness on learning and perception, we 
conducted two behavioural studies pairing a 
probabilistic perceptual discrimination task with 
trial-by-trial ratings of subjective expectation 
(Experiment 1) and surprise (Experiment 2). We 
found that the subjective experience associated 
with predictions and prediction errors can explain 
independent variance in behaviour to that 
explained by the ‘objective’ expectedness or 
prediction error parameter of a learning model. 
This suggests that beyond just the presence of a 
statistically probable or improbable event, 
subjective awareness of statistical regularities or 
prediction errors influences downstream stimulus 
processing and behavioural responses during 
perception and learning. 
 

Introduction 
 

‘Bayesian’ theories of perception posit that our 
perceptual system  increases the accuracy of 
perception - on average -  by weighting incoming 
information in line with a previously perceived 
statistical norm. If the sensory input is misaligned with 
the expected outcome, this generates a prediction 
error, which can trigger the updating of an internal 
predictive model (den Ouden, Kok & de Lange, 2012; 
de Lange, Heilbron & Kok, 2018). Experimental 
evidence suggests that the statistical learning 
enabling such perceptual predictions can occur in the 
absence of awareness (Turk-Browne et al, 2009), and 
that corresponding prediction errors may be 
processed, prompt neural responses, and influence 
learning without any experience of a mismatch 
between expectation and reality (Czigler et al, 2007; 
Rowe, Tsuchiya & Garrido, 2022). However, other 
violations of statistical regularities are broadcast to 
awareness, often with subjective experiences of 

surprise. As most previous work investigating the role 
of expectations on perception has relied on definitions 
of expected and unexpected predefined by the 
probabilistic task structure, it remains unknown 
whether subjective experiences of objective statistical 
structure - or correspondingly, experiences of violated 
expectations or surprise when these statistical 
relationships are violated - shape how sensory 
information is processed, perceived and acted upon. 
In two experiments we asked if subjective expectation 
(Experiment 1) or surprise (Experiment 2) associated 
with a cued stimulus could explain independent 
variance in perceptual decisions, relative to that 
explained by a Rescorla-Wagner learning model. 
 

Procedure 
 

In both experiments, participants were trained in 75% 
contingency mappings between two audio tones and 
two orientated Gabor patches (Fig.1). On each trial, 
participants were asked to discriminate the orientation 
of the Gabor patch, and to subsequently rate how 
much they had expected this orientation (Experiment 1) 
or how surprising they had found it (Experiment 2). 

 
Figure 1. Panel A: Example trial structure. Panel B: 
Example tone-orientation mapping.  
 

Modelling 
 

To derive ‘objective’ values for stimulus expectedness 
and prediction error, we used a Rescorla-Wagner (RW) 
learning model (Rescorla & Wagner, 1972). RW 
parameters have been shown to explain behaviour 
(Roesch et al, 2012; Williams et al, 2017) and brain 
responses (Rodriguez, Aron & Poldrack, 2006; den 
Ouden et al, 2008; Roesch et al, 2012) during learning. 
The model maintains separate expectation values ( ) 𝑉𝑇
for each tone, initialized at 0 and updated on each trial 
using , 𝑉𝑇(𝑡) =  𝑉𝑇(𝑡 − 1) +  α(γ −  𝑉𝑇(𝑡 − 1))
where  represents the model's expectation for the 𝑉𝑇(𝑡)
given tone at trial , and  is the presented orientation, 𝑡 γ
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coded as 1 or -1. On each trial, the model computes a 
prediction error value using . 𝑃𝐸 =  γ −  𝑉𝑇(𝑡 − 1)
In Experiment 1, we derived a measure of expectation 
strength independent of stimulus orientation by 
multiplying counterclockwise expectations by -1. We 
adjusted for 25% condition trials by computing 

. In Experiment 2 we used the absolute (𝑉𝑇 *  − 1)
prediction error directly as our ‘objective’ values. 
 

Results 
 

Experiment 1. In Experiment 1 (n=35), participants 
discriminated the orientation of a cued Gabor and 
rated how much they had expected the presented 
orientation on each trial. Responses were quicker 
(t(34) = -6.36, p < 0.001) and more accurate (t(34) = 
2.83, p = 0.008) for expected stimuli, indicating 
successful learning of tone-orientation associations. 
Linear mixed effects and logistic regression models 
were fitted predicting reaction time and accuracy 
respectively from expectedness ratings, RW 
associative strengths or both. All reaction time models 
had significant negative fixed effects (p < 0.001), 
indicating that as expectedness increased, reaction 
times decreased. For accuracy, subjective and 
objective expectation models had significant positive 
fixed effects (p < 0.001), while the full model showed a 
significant positive effect of subjective (p < 0.001) but 
not model expectations (p = 0.082). BIC scores 
showed that the best fitting model of both accuracy 
and RTs was the subjective model (RT BIC = 5316, 
accuracy BIC = 4117), outperforming the objective 
model (RT BIC = 5325, accuracy BIC = 4135) and the 
full model (RT BIC = 5321, accuracy BIC = 4126) for 
both behavioural measures. This suggests that 
subjective expectations associated with cued stimuli 
capture additional and unique behavioural variance to 
‘objective’ RW statistical expectations. 
 
Experiment 2. In Experiment 2 (n=36), we paired 
the same experimental design with trial-wise ratings of 
surprise. Participants again responded faster (t(35) = 
-5.73, p < 0.001) and more accurately (t(35) = 2.84, p 
= 0.007) to expected stimuli. All reaction time models 
had significant effects (p < 0.001), indicating a positive 
association between both subjective surprise and 
objective prediction error and response time. For 
accuracy, subjective and objective models had fixed 
negative effects (p < 0.001), while the full model had a 
negative effect for surprise (p < 0.001) and a 
nonsignificant negative effect of prediction errors (p = 
0.11). In terms of model fit, as in Experiment 1 the 

subjective surprise model (RT BIC = 2764, accuracy 
BIC = 6164), outperformed the full (RT BIC =  2772, 
accuracy BIC = 6172) and the objective (RT BIC = 
2770, accuracy BIC = 6188) models in both 
behavioural measures. This indicates that subjective 
experiences of surprise associated with perceptual 
prediction errors influence behaviour during learning, 
and this influence cannot be described solely by the 
magnitude of  ‘objective’ model generated prediction 
errors. 

Figure 2. Fixed effects for subjective surprise (left 
panel) and objective prediction error (right panel) 
models predicting reaction time and accuracy in 
Experiment 2. 95% confidence intervals displayed in 
turquoise for each model. 
 

Discussion 
 

In this work, we investigated the role of subjective 
expectation and surprise associated with predictions 
and prediction errors in a probabilistic perceptual 
discrimination task. We demonstrated that subjective 
experiences of objective statistical structure - and 
violations of this structure - explain significant variance 
in behaviour during learning. We further found that this 
variance is different, and in some cases greater, to 
that explained by objective task structure itself, 
modelled via a RW learning model. This suggests that 
while objective statistical associations and prediction 
errors can be processed implicitly and still influence 
learning, awareness of this structure via subjective 
expectation or surprise plays an additional role in 
influencing downstream stimulus processing, 
perception, and behavioural responses.  
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