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Abstract
Large language models (LLMs) gain understanding from
vast training datasets during the pretraining phase. Al-
though prior research has examined how these models
store knowledge, how they distinguish between accurate
and false information in context is yet to be explored.
In this paper, we presented LLMs with correct and false
information in context and prompted them to discrimi-
nate between the two. To understand which model com-
ponents carry out this ability, we performed activation
patching. We showed in detail, how much different model
components contribute to this behavior. Furthermore, we
analyzed how prompt order and content affect our patch-
ing results. Overall, we reveal which model components
separate factual from false information. We intend to ad-
vance this study by investigating how these results hold
up under different influences.

Keywords: Large language models (LLMs); activation patch-
ing; in-context learning;

Introduction
Large language models (LLMs) acquire knowledge through
pretraining on large datasets. In addition to this, they are
able to acquire more knowledge through interactions with the
user. This ability, named in-context learning, is a capability
that emerges from large-scale pretraining (Brown et al., 2020).
However, this proposes a new challenge to LLMs when pre-
sented with information that is in conflict with its pretraining
data. How does the model follow its knowledge from pretrain-
ing and accurately ignore the conflicting information?

We begin to answer this question by presenting a model
with a language based task formulated in an in-context learn-
ing setting with a prompt consisting of 4 sentences:

Prompt = ⟨X1,Y1,Z,X2⟩ (1)

where X1 is a sentence with factual information and Y1 a con-
trastive sentence with conflicting information. Z is an instruc-
tion prompt and finally X2 is the same sentence as X1 but with-
out the last token of the sentence. The task is then to predict
the next token following X2. Furthermore, we examine which
components of the model play a key role in distinguishing be-
tween correct and incorrect information, how consistent the ef-
fects of these components remain when the order of the sen-
tences is altered, and how consistent these effects are when
the content itself is modified.

Methods
In the following experiment, we present to the model Llama-
3.2-1B (Grattafiori et al., 2024) the following tasks, with the
prompt structure defined in 1:

Example 1, Order 1:
X1: ”The capital of France is Paris.
Y1: The capital of France is Berlin.
Z: Now I will give the correct answer.

...Now I will give the correct answer... ...Now I will give the incorrect answer...
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Figure 1: Behavioral results displaying the next token proba-
bilities of the correct prompt and incorrect prompt. The model
behaves as expected.

X2: The capital of France is”

Example 1, Order 2:
X1: ”The capital of France is Berlin.
Y1: The capital of France is Paris.
Z: Now I will give the correct answer.
X2: The capital of France is”

Example 2, Order 1:
X1: ”The planet closest to the Sun is Mercury.
Y1: The planet closest to the Sun is Venus.
Z: Now I will give the correct answer.
X2: The planet closest to the Sun is”

Example 2, Order 2:
X1: ”The planet closest to the Sun is Venus.
Y1: The planet closest to the Sun is Mercury.
Z: Now I will give the correct answer.
X2: The planet closest to the Sun is”

We then store the next token probabilities p(correct) and
p(incorrect), which are (” Paris”, ” Berlin”) and (” Mercury”, ”
Venus”) respectively. As a basis for our experiment we demon-
strate in Figure 1 how the model answers when presented with
the prompts. The model behaves as expected, answering cor-
rectly and incorrectly when asked to, and sets the motivation
to continue with the following experiment.

We make use of activation patching to understand how at-
tention and MLP components of every layer contribute to the
given task and conflict resolution. Activation patching, also
known as causal tracing is a standard tool for localization
in language modeling which will serve us to pinpoint activa-
tions that causally affect the output (Vig et al., 2020; Meng,
Bau, Andonian, & Belinkov, 2022). We conduct three forward
passes: (1) a ”clean” pass on the prompts, caching latent acti-
vations for the components of interest; (2) a ”corrupted” pass,



modifying the instruction prompt to be ”Now I will give the in-
correct answer”; and (3) a ”patching” pass on the corrupted
prompts, replacing component activations at each token posi-
tion with their clean cached values, one at a time. For each
pass, we compute a metric capturing the logit differences be-
tween the correct and incorrect tokens at the final position.
By comparing these metrics, we derive the ”patching effect”—
which reveals the components and token positions that en-
hance factual prediction or bias toward conflicting information.
The patching effect is calculated as follows, shown in Numpy
like pseudocode:

# clean - logits from the clean run
# corrupt - logits from the corrupted run
# patched - logits from the patched run
# all logits have shape [sequence_length, vocabulary]
# t_corr - correct token vocabulary ID
# t_incorr - incorrect token vocabulary ID

# correct and incorrect logit diff for clean
clean_diff = clean[-1, t_corr] - clean[-1, t_incorr]

# correct and incorrect logit diff for corrupted
corrupt_diff = corrupt[-1, t_corr] - corrupt[-1, t_incorr]

# correct and incorrect logit diff for patched
patched_diff = patched[-1, t_corr] - patched[-1, t_incorr]

patching_effect = (patched_diff - corrupted_diff) /
(clean_diff - corrupted_diff)

Results
As illustrated in Figure 2, patching the swapped token ”cor-
rect” within the instruction sentence reveals a noticeable re-
covery effect, diluting to the subsequent layers. Notably, early
layers, such as layers 2 through 9, exhibit a strong patching
effect. In these initial layers, where patching effects are par-
ticularly pronounced, the effect is likely because patching re-
stores the prompt to its uncorrupted state before further pro-
cessing. After the end of the sentence, in later layers such
as layers 6 through 15, at the final token, the patching effect
becomes more pronounced, possibly due to its equivalence to
aligning the next-token prediction probability with that of the
non-corrupted version. We see contributions of both the MLP
and attention layers throughout.

Another observation is that LLMs demonstrate sensitivity to
the ordering of premises, despite this not changing the under-
lying task (Chen, Chi, Wang, & Zhou, 2024). Intriguingly, as
shown in Figure 2, the model exhibits stronger patching effects
when conflicting information is presented first in the premise
ordering. We hypothesize that this reflects an attention sink
behavior: when conflicting information appears initially, the
model allocates greater attention to earlier tokens (Gu et al.,
2025). Subsequent activation patching may then yield distinct
representations, potentially introducing confusion and shifting
the model’s focus strongly towards later tokens in the task,
therefore making the patching effect more pronounced.

Discussion
Our findings highlight key architectural components of LLMs
involved in resolving conflicts between pretraining data and in-
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Example 2, Order 1
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Figure 2: The plot illustrates patching effects by token posi-
tion across two examples with differing sentence orderings.
Higher patching effects indicate a stronger contribution of the
patched component to an accurate prediction, while lower val-
ues suggest a minimal impact on the target token’s prediction.
We see a difference of effect in both ordering and content.

context tasks, emphasizing the model’s sensitivity to prompt
order and reliance on specific circuits. We are expanding
this research by testing more prompts, examining order and
content sensitivity, and analyzing attention patterns in critical
heads to better understand their roles across layers. This work
seeks to improve our understanding of output alignment with
pretraining knowledge and enhance model robustness and
safety.

Code Availability
The code for this experiment is available at:
https://shorturl.at/eH701
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