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Abstract

The occipitotemporal cortex (OTC) exhibits category se-
lectivity, with specialized regions responding to specific
object categories. Topographic Deep Artificial Neural
Networks (TDANNs) have been proposed as mechanistic
models of this spatial and functional organization. How-
ever, a direct comparison of the visual and semantic fea-
tures driving functional selectivity in the two systems is
lacking. We analyzed fMRI data from three participants
viewing 200 images of distinct body parts and inanimate
objects, and compared OTC selectivity with TDANN ac-
tivations. Body-, hand-, and tool-selective regions all
showed strong category preferences. TDANNs displayed
similar, though weaker, selectivity with blurrier category
boundaries, especially for tools. Texture scrambling re-
vealed that TDANN selectivity partly relies on local fea-
tures: body and hand selectivity persisted despite global
shape disruption, while tool selectivity disappeared, pos-
sibly due to their higher similarity with the other inani-
mate categories. These results represent a first step to-
ward better characterizing and comparing functional se-
lectivity in visual cortex and topographic models.
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Introduction

The occipitotemporal cortex (OTC) exhibits functionally-
selective responses to specific object categories, such as
faces, bodies, and scenes (Kanwisher, 2010). Finer-grained
distinctions have also been observed, such as separable re-
sponses to hands and whole-bodies (Bracci et al., 2010).

Recent computational modeling work have developed To-
pographic Deep Artificial Neural Networks (TDANNs) that pro-
pose a mechanistic explanation of the emergence of the spa-
tial organization in OTC (Lee et al., 2020). TDANNs incorpo-
rate a spatial loss function that constraints neighbouring units
to have correlated firing patterns, leading to the emergence of
category-selective clusters (Margalit et al., 2024). TDANNs al-
low direct test on what computational advantages topographic
organization confers onto a system (Deb et al., 2025; Qian et
al., 2024). However, the categories tested so far, like faces
and scenes, vary on many visual and semantic properties.
Therefore, it remains unclear whether topographic models can
replicate the finer-grained functional selectivity profile at the
image level for categories sharing higher semantic similarity.
Moreover, the extent to which these similarities reflect shared
computational mechanisms and sensitivity to the same fea-
tures is still unknown.

Here, we compare the functional selectivity for bodies,
hands, and tools in visual cortex and TDANNs, and test the
influence of mid-level features on the emergence of category-
selectivity in computational models.

Methods
fMRI dataset. We collected fMRI data from three partici-
pants in six scanning sessions. The stimulus set consisted
of 200 images depicting whole bodies (without visible hands),
hands, tools (e.g., hammer, pliers), manipulable (glass, plate),
and non-manipulable (air baloon, standing lamp) objects.

ROI selection. To maximize spatial precision, ROIs were
defined on the native unsmoothed surface of each participant,
based on data from a separate localizer session, with a con-
trast of category vs. all. Here, we report the results for three
ROIs in lateral OTC: a right-lateralized body-selective region
in the Lateral Occipital Sulcus (LOS-body), a left-lateralized
hand-selective region in the posterior Inferior Temporal Gyrus
(ITG-hand), and a left-lateralized tool-selective area more an-
teriorly in ITG (ITG-tool).

Network. The analyses were performed on the TDANN
model (n = 5 initializations), developed by Margalit et al.
(2024) and consisting of a pretrained self-supervised ResNet-
18 (trained with ImageNet). Analyses targeted the last (VTC-
like) topographic layer. Category-selective clusters were iden-
tified by selecting contiguous selective units with a contrasts of
category vs. all (t > 3.5), and the top-25 most selective units
within the clusters were selected for further analyses among
those passing this threshold. This was done to select only
units that show the highest selectivity and to select a compa-
rable number of units as category-selective voxels in the brain.

Functional selectivity Analyses We quantified category
preferences in OTC and TDANNs using:

• A Selectivity Index (SI), defined as:

SI =
µcategory −µothers

µcategory +µothers

with µ corresponding to the mean activation per category.
The significance of each category SI (vs. each of the other)
was assessed using 10000 permutation tests, and all re-
ported results are significant at p < 0.004 (Bonferroni cor-
rected with N = 12 comparisons), unless we report no ef-
fect.

• Top-N rank analysis: Proportion of stimuli from each cate-
gory among top 25 responses (e.g., how many hands there
are in the 25 stimuli eliciting the highest activation).

Texture Analyses To investigate the influence of mid-level
visual features in eliciting functional selectivity in TDANNs, we
conducted two texture scrambling analyses:

• Gatys-style texture synthesis: Texturized versions of im-
ages generated by matching the feature correlations of mid-
level layers of a VGG16 (Gatys, Ecker, & Bethge, 2015),
preserving local feature statistics and object identity while
disrupting global shape.

• Texforms: Synthetic texture representations that retain local
features but disrupt both global shape and object identity
(Freeman & Simoncelli, 2011; Long, Yu, & Konkle, 2018).



Figure 1: Stimulus set and ROIs. a) Example of stimuli used:
localizer, natural images, and texture-scrambled versions of
the natural images. b) Body, hand, and tool activations in an
example participant. c) Body, hand, and tool clusters in the
VTC-like layer of three initializations of the TDANN model.

Results
Testing category selectivity in visual cortex and
TDANNs
Category-selective regions in the visual cortex showed dis-
tinct functional specialization: LOS-body exhibited strong se-
lectivity for bodies (SI = 0.56), with 84% of its top-25 acti-
vating images depicting bodies, with a secondary presence
of hands (8%). ITG-hand displayed sharp hand selectivity
(SI = 0.57), primarily activating to hands (76%) with sec-
ondary responses to tools (16%) and bodies (8%). ITG-tool
selectively responded to tools (SI = 0.42), which dominated
its top-25 activations (72%), followed by a weaker sensitivity
to manipulable objects (20%).

TDANNs developed similar albeit weaker category selectiv-
ity: body units showed selective responses to bodies (SI =
0.44) with 68% of bodies in the top-25 images, but retained
some hand responses (28% in top-25); hand units similarly
match cortical selectivity (SI = 0.41) with 52% of hand images
in the top-25, but showed some sensitivity to non-hand cate-
gories (especially non-manipulable in the top-25: 20%), and
tool units demonstrated positive tool responses (SI = 0.25;
48% top-25), but with no significant difference compared to
the SI of the other inanimate objects.

Texture scrambling weakens but preserves
functional selectivity in TDANNs
To test the influence of mid-level visual features in eliciting cat-
egory selectivity in TDANNs, we conducted the same analy-
ses with texturized images.

Gatys-texture scrambling reduced but preserved category
specificity, with body units showing retained body preference
(SI = 0.28) and 56% images of bodies in the top-25, but in-
creased hand responses (SI = 0.1, 32% in top-25), hand units
maintaining selectivity (SI = 0.35, 40% in top-25) but with in-
creased sensitivity to tools (36% in top-25), and tool units
showing little distinction between tools and other inanimate
objects, especially manipulable (tool SI = 0.23, manipulable
SI = 0.15, no difference between tools and other inanimate
objects, tool 35% in top-25, and manipulable 40%).

The analysis with texforms revealed that body units main-
tained category preference (SI = 0.23, 60% in top-25), but
with increased sensitivity to non-preferred stimuli (e.g., manip-
ulable appeared 25% in top-25), hand units weakening in se-
lectivity (SI = 0.11, 40% in top-25) while increasing responses
to inanimate objects (60% combined in top-25), and tool units
further losing specificity (SI = 0.042) with top-25 dominated
by the other inanimate objects (68% combined).

Figure 2: Functional selectivity. Sorted activations and top-5
images for a) body, hand, and tool selective areas in OTC, b)
body, hand, and tool units for original images in TDANNs, c)
body, hand, and tool units for texform images in TDANNs.

Discussion
In OTC, we observed a categorical and distinct selectivity pro-
file for body, hand, and tool areas (Peelen & Downing, 2017).
TDANNs, while showing similarity in terms of category pref-
erences (especially for bodies and hands), had weaker se-
lectivity and blurrier category boundaries, with more graded
tuning for non-preferred categories. Moreover, the fact that
selectivity is partially retained for texturized images suggest
that TDANNs may rely on mid-level texture statistics for their
functional organization (Jagadeesh & Gardner, 2022); at the
same time, they struggle in capturing distinctions within inan-
imate objects, possibly because these stimuli present higher
visual and semantic similarity (Cortinovis, Peelen, & Bracci,
2025). In future analyses we will test the influence of texture
scrambling on the functional selectivity of category-selective
areas, and we will examine how these topographic constraints
directly influence, and potentially clash with, functional selec-
tivity, to highlight the potential conflict or benefit of spatial or-
ganization onto functional correspondence with visual cortex.
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