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Abstract

Chess provides a powerful framework to investigate how
expertise shapes neural representations. We conducted
an fMRI study with 20 expert and 20 novice chess play-
ers who viewed 40 boards that systematically varied
across three main feature categories. Using Represen-
tational Similarity Analysis (RSA), we found that while
both groups encoded low-level visual features similarly,
experts showed distinctly more clustered representations
of strategic and higher-level properties. A dimensional-
ity compression measure (Participation Ratio) further re-
vealed that experts’ neural signals were concentrated in
fewer dimensions, suggesting more efficient coding in
experts. Taken together, these findings suggest that ex-
pertise may result in optimized, lower-dimensional rep-
resentations within regions involved in both domain-
specific (chess-related) and domain-general processing,
enabling more effective representations of complex stim-
uli — which may be the basis of Expertise behavioral ef-
fects.

Introduction

It is well-established that experts outperform novices in tasks
within their domain of expertise (Chase & Simon, 1973a), yet
the neural basis of this advantage remains an open question.
Chess, considered a prime example of cognitive expertise
(Bilali¢, 2017), with its rich history in cognitive and psycho-
logical research and the large wealth of available data, is an
ideal starting point for our investigation on expertise.

Prior studies indicate that experts differ from novices in eye
movements (Bilali¢, Langner, Erb, & Grodd, 2010), univari-
ate brain activity (Bilali¢ et al., 2010; Krawczyk, Boggan, Mc-
Clelland, & Bartlett, 2011; Bilali¢, Turella, Campitelli, Erb, &
Grodd, 2012), and cognitive strategies — such as “chunking”
the board into familiar groupings (Chase & Simon, 1973b).
However, key questions remain: what information do experts’
brains encode, and where in the brain are these representa-
tional changes implemented?

Although existing studies identify brain areas involved in
chess expertise, they do not directly address what informa-

tion these areas encode or how these representations differ in
experts versus novices. Traditional univariate analyses might
miss important changes in representational geometry—cases
where the overall activation looks similar, but the underlying
activity patterns reveal distinct processing in experts.

In other words, we still need to pinpoint whether experts’
neural representations of chess differ systematically from
those of novices, which brain regions exhibit these differ-
ences, and which stimulus properties drive these changes.

Representational geometry provides a framework to exam-
ine this: by looking at the structure of neural activation pat-
terns (for instance, how stimulus representations cluster or
separate in neural representational space), we can under-
stand how expertise shapes information processing (Martens,
Bulthé, van Vliet, & de Beeck, 2018; Duyck, Martens, Chen, &
Op de Beeck, 2021).

In this study, we aim to fill these gaps by using multi-variate
techniques — such as Representational Similarity Analysis
(RSA) — to investigate how chess expertise alters the repre-
sentational geometry of neural activation patterns related to
chess boards.

Methods

Stimuli The experiment used a set of 40 chess-board stim-
uli varying along three categories: Checkmate vs. Non-
checkmate boards, a high-level relational category; Strategy,
defined by the pieces involved and the complexity of the
checkmate (queen—-rook mates, queen—rook supported by mi-
nor pieces, knight-bishop mates, bishop forcing moves, and
simple one-move checkmates). This category reflects both
tactical/relational reasoning and a visual component related
to piece identity; and Visual similarity, where each checkmate
has a visually matched non-checkmate differing by a single
pawn that disrupts the mate, capturing low-level perceptual
properties.

fMRI data collection and analysis We conducted an fMRI
study with 40 participants (20 experts, 20 novices). All novices
understood chess rules and could identify checkmates and le-
gal moves, but lacked formal training or an Elo rating. Experts
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Flgure 1: Left: binary (same-different) model RDMs for each category. Axes colors
represent Checkmate (green) and Non-Checkmate (red) stimuli, while saturation indi-
cates different strategies. Stimuli are ordered, so that e.g., the the first Checkmate stim-
ulus is visually similar to the first Non-Checkmate stimulus. Center: RSA results. Bars in-
dicate the Pearson correlation between model RDMs and group-averaged RDMs across
ROls for Experts and Novices. Error bars indicate 95% Confidence Intervals. Stars and
and colored x-axis labels indicate significant differences (FDR corrected, prpr < .05)
between Experts and Novices. Right: Expert - Novices RSA results plotted on pial sur-
face. Only significant ROI differences are shown.

had a rating of 1800 or higher, either official or online. Partic-
ipants performed a 1-back task, deciding whether the current
board was more advantageous than the previous one, over
5-10 scanning runs. FMRI Data was pre-processed with fM-
RIPrep (Esteban et al., 2017) and analyzed using a First-Level
General Linear Model (GLM) in SPM12. The first-level GLM
included a separate regressor per trial, resulting in 40 regres-
sors (one per chess board) and 8 nuisance regressors (global
signal, 6 motion parameters, frame-wise displacement) per
run.

Beta images for the same board were averaged across runs
to yield a more reliable subject-level estimate. For each sub-
ject, we extracted multi-voxel activation patterns from these
run-averaged beta images within specific Regions of Interest
(ROIs).

The ROIs were defined via the Glasser parcella-
tion (Glasser et al., 2016), projected into MNI space,
and made available as MNI_Glasser_HCP_2019.v1.0 via
afni_atlases_dist (AFNI; Cox, 1996). Hemispheric parti-
tions in the AFNI Glasser parcellation were merged into bilat-
eral masks and grouped by the coarse labeling in the original
parcellation (Glasser et al., 2016) (see Fig. 1).

We performed two main analyses at the subject level and
then averaged the results across participants to compare Ex-
perts and Novices: RSA, (Kriegeskorte, Mur, & Bandettini,
2008) to characterize the representational geometry within
each ROI for both groups, assessing how these patterns re-
late to the categorical Representational Similarity Matrices
(RDMs) derived from our dataset; and Participation Ratio
(PR) (Altan, Solla, Miller, & Perreault, 2021; Gao et al., 2017)
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Flgure 2: Participation Ratio difference (Experts — Novices) across ROls. Lower val-
ues indicate lower representational dimensionality in Experts. Bars represent 95% Confi-
dence Intervals. Group differences and Cls were computed using independent-samples
t-tests assuming unequal variances. Stars represent FDR-corrected significance.

to quantify the degree of information compression in each
ROI, evaluating whether expertise is associated with more
compact neural representations.

Results

Representational Geometry We constructed Representa-
tional Dissimilarity Matrices (RDMs) reflecting the similarity
structure predicted for each category and compared them to
the brain-derived RDMs for each ROI and subject. Predicted
RDMs were binary: pairs from the same label had distance 0;
pairs from different labels (e.g., Strategy types, or Checkmate
vs. Non-Checkmate) had distance 1. Brain RDMs were esti-
mated using correlation distance between run-averaged ROI
data, and compared to the predicted RDMs using Pearson
correlation. Higher r between model and brain RDMs indicate
higher alignment between the brain’s representational geom-
etry and the predicted geometry for that category.

Figure 1 shows that lower-level, perceptual stimulus prop-
erties as captured by the visually similar pairs are well repre-
sented in both groups, with no significant differences between
Experts and Novices. This suggests similar low-level visual
processing across groups. In contrast, the “Strategy” and
“Checkmate vs. Non-checkmate” categories exhibit stronger
correlations in Experts, indicating a stronger representation of
these properties in intermediate and high-level regions.

These findings suggest that although both groups exhibit
similar geometry for perceptual features, experts’ represen-
tations are more sensitive to high-level strategic information.
These differences are evident in dorsal and medial parietal
areas associated with rapid pattern retrieval from long-term
memory (Bilali¢ et al., 2010; Bilali¢, 2017), in intermediate vi-
sual regions, premotor cortex, and dorsolateral prefrontal ar-
eas linked to working memory and executive control.

Dimensionality Compression We computed the PR to es-
timate dimensionality in the GLM beta images within each
ROI. After averaging betas across runs and extracting voxel-
wise data, we performed PCA (retaining all possible compo-
nents, n — 1 = 39), and calculated the PR on the resulting
matrix. High PR indicates variance spread across many com-
ponents (high-dimensional representation); low PR indicates
variance concentrated in fewer components (low-dimensional
representation).



Figure 2 shows the PR difference (Experts — Novices)
across ROls. Most regions exhibit significantly negative val-
ues, indicating lower dimensionality in Experts. This aligns
with the idea that expert brains compress information into
fewer, more efficient representational dimensions.

Conclusions

Our RSA and PR analyses converge on the conclusion that
expert chess players exhibit more compressed optimal repre-
sentational manifolds compared to novices. This aligns with
prior theoretical frameworks like “chunking” and template the-
ories (Chase & Simon, 1973b; Gobet & Simon, 1996) that
predict experts develop more compact neural representations
through extensive practice and experience.

Taken together, these findings suggest that expertise leads
to more optimized representations that likely facilitate rapid
encoding and retrieval of chess configurations. This opti-
mization is observable not only in regions encoding domain-
specific information (e.g., chess pieces and patterns) but
also in general-purpose areas—such as premotor and visual
ROIls—implicated in broader aspects of spatial reasoning and
motor planning.
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