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Abstract 
Placebo hypoalgesia is often explained by predictive 
processing theories, in which perception arises from 
a form of (approximate) Bayesian integration of 
expectations (prior) and sensory evidence 
(likelihood). However, few studies have formally 
tested this model and uncertainty remains regarding 
its implementation in the nervous system.  
Here, we use a probabilistic pain learning task and 
computational modelling to test a series of 
hypotheses about how healthy volunteers form and 
update expectations about the painfulness of 
upcoming thermal stimuli and how these 
expectations shape the way they perceive these 
stimuli. Of note, our models jointly account for all 
response types collected during the task, 
constituting a first step towards a comprehensive 
computational model of pain perception. 
Our results support the full Bayesian predictive 
processing model, in which 1) the update of 
expectations is calibrated on different sources of 
uncertainty (posterior belief variance, sequence 
volatility), which are tracked continuously by the 
agent, and 2) the effect of expectations on 
perception is proportional to the relative uncertainty 
of predictions and sensory evidence (precision 
weighting). 
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Expectations shape pain perception. A prime 
example of this is placebo hypoalgesia, when the 
expectation of pain relief leads to a decrease of 
perceived pain even in the absence of exogenous 
analgesic molecules (Buchel et al., 2014).  
This phenomenon nicely aligns with the predictive 
processing framework, which postulates that 
perceptions are the result of a form of (approximate) 
Bayesian inference in which the nervous system 
uses expectations derived from context and past 
experience to make sense of the noisy bottom-up 
sensory evidence it receives from the periphery 
(Walsh et al., 2020).  
This predictive processing account of placebo 
hypoalgesia has become quite popular in the field, 
even though few experiments have formally tested it 
(Buchel et al., 2014).  
With this study, we aimed to directly test this model 
using the data of 34 healthy volunteers who 
performed a probabilistic reversal learning task 
during which they had to learn the association 
between two arbitrary visual cues and the probability 
of receiving either a painful or a non-painful heat 
stimulus. Reversing the cue-stimulus association 
was used as a way to periodically modulate the 
participant’s expectations. 
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Figure 1: Task structure and belief trajectories of a 

sample participant 
Using model comparison, we aimed to test different 
hypotheses about the way participants update their 
beliefs about the likelihood of painful events and how 
these expectations are integrated with sensory 
evidence to form the final percept.  
An optimal Bayesian learner would calibrate the 
update of their belief on different sources of 
uncertainty: the inherent uncertainty of their belief 
(posterior variance) but also the uncertainty of their 
perceptions (stochasticity) and uncertainty linked to 
changes in the sequence (volatility) (Pulcu & 
Browning, 2019). Here we assess whether our 
participants dynamically track and calibrate their 
learning rate on the uncertainty of their belief and the 
volatility of the sequence (binary Volatile Kalman 
Filter;VKF), only the uncertainty of their belief (binary 
Kalman Filter; KF), or use a constant learning rate 
(Rescoral-Wagne; RW) (Piray & Daw, 2020).  
Similarly, an optimal Bayesian agent would calibrate 
the influence of their expectations on their 
perception based on the relative uncertainty of these 
expectations and of the sensory information. In 
situations in which sensory evidence is 
ambiguous/clear, expectations would have more/less 
weight. Here, we test models which assume no 
effect of expectations (N) on stimulus recognition 
(classification as painful or not), constant weighting 
of expectations and sensory evidence (KW), and 
optimal precision-weighted integration (PW). 
Combining the different learning and recognition 
models, we built a series of eight joint models 
(precision-weighted integration and RW learning are 
incompatible). Importantly, rather than modelling 
these processes separately, we built integrated 
multivariate models that jointly explain binary 
predictions and response times, binary postdictions 
and response times, and VAS intensity ratings 
(Figure 2). These models are built hierarchically to 

reflect the structure of the data: trial within 
participant within population. 

 
Figure 2: Architecture of the multivariate model 

We wrote and estimated these models in Stan. We 
ensured internal validity and model discriminability 
through parameter and model recovery. 
Conventional diagnostics were used to ensure 
proper sampling of the models (Stan Development 
Team, 2019). Two of the models (VKF N & VKF KW) 
could not be properly sampled (divergent transitions 
even when using .99 adapt_delta and 2000 warm-up 
iterations) and were excluded from model 
comparison. 
Using approximate leave-one-out cross-validation 
with moment matching, we compared the ability of 
the different models to explain our data (Vehtari et 
al., 2024). As can be seen in Table 1, the best model 
(highest expected log-pointwise predictive density - 
ELPD) included the VKF learning algorithm and 
precision-weighted integration of expectations and 
sensory evidence when forming perceptions. 

Table 1. Model comparison results 

Learning Recognition Δ ELPD P(Δ ELPD>0) 

VKF PW 0.0 NA 

KF N -60.0 0.025 

KF PW -62.3 0.000 

KF KW -64.8 0.000 

RW KW -120.9 0.000 

RW N -131.3 0.000 

 
Additional hypothesis tests built into the models 
revealed that perceived intensity was biased towards 
expected pain level beyond the effect of 
expectations on recognition (P(𝜃>0)=0.003) and that 



this effect appeared to be similar regardless of the 
type of stimulus (P(𝜃>0)=0.743).  
These findings provide direct empirical support for a 
Bayesian predictive processing account of placebo 
hypoalgesia, showing that both the update of pain 
expectations and their integration with sensory 
evidence appear to be dynamically calibrated to 
uncertainty. Additionally, by jointly modelling all 
behavioural responses rather than fitting separate 
models for each, we move closer to a 
comprehensive computational model of pain 
perception. This approach avoids the pitfalls of 
sequential model fitting and provides a more unified 
account of the mechanisms shaping pain perception. 
It also lays the groundwork for future studies 
investigating how these computations may be 
altered in clinical populations or modulated by 
neuromodulatory interventions. 
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