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Abstract 

We utilize standard and risk-sensitive reinforcement 

learning (RL) models to examine behavior and neural 

encoding of expected value and prediction error in 71 

neurosurgical subjects during a risky decision-

making task. We observed a behavioral trade-off 

between task performance and accuracy, specifically 

underpinned by negative prediction errors. Less 

impulsive choosers encoded RL model variables 

across brain regions to a greater extent, with greater 

encoding in the striatum, nucleus accumbens, and 

frontal cortices, compared to more impulsive 

choosers. More impulsive choosers’ decision-making 

was dictated by negative prediction errors, leading to 

risk-aversive tendencies and, ultimately, suboptimal 

decision-making. 

 

Keywords: reinforcement learning; risk sensitivity; 

impulsivity; decision-making 

Introduction 

Impulsive choice (IC) refers to the tendency to favor 

smaller, immediate, or more certain rewards over larger, 

delayed, or uncertain rewards (Hamilton et al., 2015) and 

is a prominent component of many psychiatric disorders 

(Huys et al., 2014). One approach by which individuals 

may make impulsive decisions is through risk aversion; by 

avoiding potential loss of reward and gaining instant 

gratification (Białaszek et al., 2015). In economics, risk is 

defined as the variance associated with an outcome (Niv 

et al., 2012), which may be examined via prediction error 

(PE) —a canonical signal of reinforcement learning 

(Preuschoff et al., 2006; Schultz, 2016). To avoid loss and 

gain instant reward, we posit that more impulsive 

individuals will exhibit risk-aversive tendencies, which will 

be observed via suboptimal task performance, related to 

differential learning rates associated with negative 

outcomes. 

Methods 

71 neurosurgical epilepsy patients underwent 

implantation of electrodes into the cortex and deep brain 

structures. Patients completed the Balloon Analog Risk 

Task (BART; Fig. 1A) while their brain activity was 

recorded. During BART, subjects inflate and stop an 

artificial balloon to accumulate points. There are red, 

orange, and yellow balloons that have decreasing levels 

of risk, related to the balloon’s potential inflation time (IT). 

Subject IC level was calculated as the difference between 

passive and active trial IT distributions for yellow balloons. 

A Gaussian mixture model classified subjects as more 

impulsive (MI, N = 37) or less impulsive (LI, N = 34) 

(Fig.1B). To examine neural correlates IC and reward, we 

examined broadband high frequency (HFA; 70-150Hz) 

activity from intracranial electrodes in drug-resistant 

epilepsy patients. Each subject’s outcome-aligned HFA 

(correlated with population neuronal firing near the 

electrode (Manning et al., 2009); was modeled as a linear 

combination of temporal difference (TD) variables. BART 

allows us to measure trial-by-trial PE (Eq1), value 

expectation (VE) (Eq2), with optimal ’s (Sutton & Barto, 

2018) and a risk-sensitive model (Eq3) (Niv et al., 2012): 

 

Eq1. 𝛿𝑡 = 𝑟𝑡 + 𝑉𝑡 − 𝑉𝑡−1 

Eq2.  𝑉𝑡 =  𝑉𝑡−1 +  𝛼 ∙ 𝛿(𝑡𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ) 

Eq3. 

𝑉𝑡 = {
𝑉𝑡−1  + + . (𝑡𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ) 𝑖𝑓  (𝑡𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ) > 0,

𝑉𝑡−1  + − . (𝑡𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ) 𝑖𝑓  (𝑡𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ) < 0,
 

Results 

Each subject averaged 233  24 total trials and 83%  

7 task accuracy. Balloon accuracy was higher for 

yellow (87%), and orange (88%) compared to red 

(61%) (F(210)=139, p<.0001), and points gained by 

 
Figure 1: (A) BART schematic. r = reward (B) Histogram 

of IC score by group (MI = green, LI = purple) (C) Total 

points gained by balloon color (yellow, orange, red) 

between IC groups (MI = , LI = o) (D) Regression 

between points gained and IC level. 

 

 



balloon color were higher for yellow, orange, and red 

balloons, respectively (F(210)=339, p<.0001). Across 

all trials, MI choosers were more accurate than LI 

choosers (Z=2.04 p=.041), and rank-sum revealed that 

LI choosers were less accurate on yellow balloons 

compared to MI choosers (Z=4.1, p<.0001), but not 

other balloons. Across all trials, LI choosers gained 

more points compared to MI choosers (Z=-3.6, 

p=.00036), notably from statistically more yellow 

balloon points (Z=-3.6, p=.00036) (Fig.1C). Linking 

RSTD models outcomes to behavior, MI choosers 

showed differences between negative and positive ’s 

calculated from the RSTD model (Z=-3.3, p=0.0008), 

but LI choosers didn’t. Furthermore, impulsivity scores 

correlated to increased risk sensitivity scores (t(71)=-

2.2, p=.033) and negative ’s (t(71)=-2.3, p=.025). 

Across all electrode contacts, we observed the most 

encoding for the Reward PE (10.2%) and RSTD PE 

models (9.8%). For the RSTD model, we observed 

greater encoding of PE (19.3%) than VE (12.6%; 

χ2=42.8, p<.0001). However, a group-level dichotomy 

revealed that LI choosers encoded more PE (8.3% vs 

11.6%; χ2=15.9, p<.0001) and more VE (5.3% vs 

7.0%; χ2=6.4, p=.01). For the overall PE TD model, we 

observed greater encoding of riskPE (20.0%) than 

rewardPE (14.4%; χ2=28.6, p<.0001). Compared to MI 

choosers, LI choosers encoded more riskPE (5.8%% 

vs. 8.3%; χ2=12.5, p<.0001) but similar rewardPE 

(9.0% vs. 11.5%). For the overall VE TD model, we 

observed greater encoding of rewardVE (15.4%) than 

riskVE (11.9%; χ2=13.1, p<.0001). Neither MI nor LI 

groups encoded significantly more riskVE (8.1% vs. 6.9%) 

or rewardVE (6.4% vs. 5.8%), respectively. Compared to  

MI choosers, LI choosers encoded RSTD PE to a greater 

 

 

 

 

 

 

 

 

 

 

extent across most regions, notably the 

nucleus accumbens (0% vs. 33.3%), 

striatum (6.7% vs. 13.3%), insula (8.1% 

vs. 12.1%), and cingulate (2.4% vs. 

6.8%). Similarly, LI choosers encoded RSTD VE to a 

greater extent across most regions, notably, the 

amygdala (1.6% vs. 9.1%), nucleus accumbens (0% vs. 

33.3%), and striatum (8.0% vs. 11.1%), but not the 

thalamus (10.3% vs. 1.85%). 

Discussion 

In this study, we utilize an enormous intracranial dataset 

of 5167 electrodes to examine risk sensitivity and the 

neural underpinnings of IC using TD learning models with 

optimal ’s. Our observation that MI choosers were more 

accurate but overall gained fewer points aligns with the 

impulsive tendency to opt for smaller, more immediate, 

and more certain rewards: stopping the balloon inflation 

early without reaping the full reward potential of the 

balloons. This tradeoff was particularly evident in the 

yellow balloon trials, which have the biggest reward 

potential, as MI choosers inflated balloons by 23.64% 

(~1.5s) less than LI choosers (Fig.1C). LI choosers 

tended to take more risks, which led them to perform more 

optimally on the task, while MI chooser’s accuracy-point 

tradeoff suggests that they adopted a risk-aversive 

strategy. This behavioral finding is supported by 

differences in ’s, showing that MI choosers may make 

decisions based on negative outcomes, which stifles 

potential reward gains, leading to suboptimal decision-

making. Neurally, we observed that LI choosers encoded 

more PEs, which, in tandem with the differential 

behavioral strategies exhibited by the impulsivity groups, 

suggests risk sensitivity drives reward-seeking behaviors 

and may be modulated by impulsivity. These findings 

have implications for understanding the basis of decision-

making, risk sensitivity, and impulsive choice. 

Figure 2: RSTD model. (A&B) Examples  

of MI/LI risk surprise by reward categories. 

(C) Optimal alphas for negPEs, posPEs,  

and Risk Sensitivity between IC groups.  

(D-F) Regressions between IC groups and 

negative, risk sensitivity, and positive ’s. 

(G-H) RSTD PE & VE encoding between  

IC groups across ROIs. 
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