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Abstract
The human brain processes both static and motion-
defined visual cues for object representation, yet most
computational models emphasize static information. We
investigated neural responses to motion-defined object
stimuli (”object kinematograms”) by comparing brain ac-
tivity with a dual-pathway artificial neural network that
separates slow- and fast-varying visual information. Our
findings show that while this dual-stream network cap-
tures aspects of biological motion processing, integra-
tion of slow and fast information improves similarity to
brain in some regions but not others. These results high-
light the functional diversity across visual areas in dy-
namic object representation.
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Introduction
While motion information is essential for tracking objects and
understanding environmental dynamics, its role in object cat-
egorization remains understudied. Recent work by Robert,
Ungerleider, and Vaziri-Pashkam (2023) investigated how mo-
tion cues inform object categorization and contribute to object
representation in the visual system. They used object kine-
matograms in which the object structure is defined solely by
motion cues. Their findings revealed that motion-defined ob-
ject information is processed by a broad network of visual ar-
eas that extends beyond classical motion-sensitive regions,
including regions traditionally associated with static object pro-
cessing. These results challenge the classical view that mo-
tion processing is strictly separate from object form perception
and suggest that motion cues may influence object form rep-
resentations across multiple areas of the visual system. Nev-
ertheless, how visual areas process and integrate fast- and
slow-varying visual information towards object representation
is unclear. To address this gap, here we use a deep learn-
ing approach using an artificial neural network (ANN) with two
parallel specialized pathways (Feichtenhofer, Fan, Malik, &
He, 2019). This ANN processes visual information at different
temporal resolutions by directing slow and fast-varying motion
information through separate pathways, while allowing infor-
mation integration via cross-pathway connections. We input

object kinematograms into the model and compare its layer-
wise representations with fMRI responses to the same stimuli
in multiple visual regions, probing the distinct slow and fast
representational properties of each region. Through ablation
experiments on the model, we further characterize the tempo-
ral processing profiles of individual visual areas.

Results
To examine how motion cues contribute to object represen-
tations in the brain, we analyzed fMRI responses to “object
kinematograms”. These stimuli were generated by extract-
ing motion vectors from videos of single moving objects and
mapping them onto random dot patterns. A prior behavioral
study confirmed clear categorical distinctions between three
categories of animate (human, mammal, reptile) and three
inanimate (tool, ball, pendulum/swing) objects (Robert et al.,
2023). These neural activations were compared with activa-
tions from the SlowFast network, a two-stream ANN trained
on action recognition (Kay et al., 2017) that processes visual
input through parallel slow (low temporal resolution) and fast
(high temporal resolution) pathways. We computed represen-
tational dissimilarity matrices (RDMs) from ANN ReLU activa-
tions and fMRI responses, then used Kendall’s Tau correlation
and cluster permutation-based significance tests to measure
representational similarity (RSA) between the model and the
brain, across visual areas (Nili et al., 2014; Maris & Oosten-
veld, 2007).

Comparisons with the Slow and Fast Pathways
We examined how each network pathway aligned with brain
activity of seven visual areas (Figure 1A) using RSA. The
regions were selected based on previous studies on object
kinematograms (Robert et al., 2023). Comparisons with the
slow (Swx) and fast (Fwx) pathways of the model suggest a
diverse pattern of specializations across visual areas (Fig-
ure 1B). In the early visual cortex (V1), neither the slow (Swx)
nor fast (Fwx) pathway showed significant correlation, consis-
tent with the low-level feature processing of V1. Similarly, nei-
ther pathway was aligned with the object-selective posterior
fusiform sulcus (pFS), suggesting limited sensitivity to motion-
defined objects as captured by our ANN. The remaining areas
displayed variable similarities, predominantly with Swx. The
object-selective lateral occipital cortex (LO) showed weak sim-



Figure 1: RSA between networks and brain regions. Error bars show SEM, black lines significant RSA differences, gray areas
the noise ceiling and red vertical lines the cross-pathway connections.

Figure 2: Results of the RSA comparing layer 12 of networks
(layer with the largest difference in Figure 1) with the brain. Er-
ror bars show SEM, Asterisks significance, and the gray area
the noise ceiling SEM.

ilarity to both pathways in the early layers, but the deeper lay-
ers exhibited a negative correlation, suggesting that the LO or-
ganizes information about object kinematograms in a manner
that differs systematically from the representational structure
of this ANN. inFIPS correlated more strongly with Swx than
Fwx, especially in the early layers. However, this similarity de-
clined after the third cross-pathway connection. Extrastriate
body area (EBA) and LOT-bio, associated with perception of
body and biological motion, showed significantly higher simi-
larity to Swx than Fwx, especially in the deep-intermediate lay-
ers. Furthermore, the left supramarginal gyrus (SMG) showed
stronger alignment with Swx. The areas included in this study
appear to cluster into three groups: those that showed no sig-
nificant similarity to the model (V1 and PFS), those exhibit-
ing decreasing similarity throughout the layers of the model
(LO and inFIPS), and those demonstrating significant and rel-
atively high similarity, particularly with the higher intermediate
layers of Swx (EBA, LOT-bio, SMGlh). In the following sec-
tions, we focus on the 12th layer, which showed the largest

RSA difference between pathways across all regions, as the
representative layer (Figure 2).

Effect of Cross-pathway Connections
In the SlowFast architecture, there are occasional cross-
pathway connections from the fast to the slow pathway.
Due to these cross-pathway connections, it remained unclear
whether the observed (dis)similarities with the slow pathway
stemmed from slow-varying or was related to the fast-varying
information channeled through the fast pathway to the slow
pathway. To assess the impact of motion integration, we used
an ablation experiment to examine a model without cross-
pathway connections (Snox). Removing the connections be-
tween the slow and fast pathways did not have a significant
effect on alignment with V1, PFS, EBA, and LOT-bio. However,
Snox showed similarity with LO, whereas Swx did not (orange
vs. green in Figure 2), suggesting that integration with the
fast pathway reduces alignment with LO. This indicates that
LO’s representational geometry aligns more closely with slow-
varying information, and that incorporating fast-varying motion
cues decreases similarity to this region. Removing the cross-
pathway connection also improved alignment with inFIPS, but
this effect did not reach statistical significance. Interestingly,
unlike LO and inFIPS, Swx showed significantly higher align-
ment with the left SMG than Snox in later layers, suggesting
that integrating fast-varying motion information increases rep-
resentation similarity with this region.

Importance of Motion During Training
Finally, we asked whether the concurrent training of the in-
terconnected slow and fast pathways had influenced the ob-
served similarities between brain activity and the slow path-
way (e.g., with EBA). To address this question, we compared
Snox with an independently trained slow-only model (S1). Snox
significantly outperformed S1 in EBA and LOT-bio, while both
models performed similarly in other regions. This suggests
that the representations of these two regions do not depend
on the input of direct fast-varying motion during inference, as



indicated by similar correlations with Swx and Snox. However,
exposure to fast motion during learning had a significant im-
pact on the development of their functional specialization. This
is reflected in the higher similarity with Snox compared to S1.

Conclusion
Our findings demonstrate distinct patterns across visual ar-
eas in alignment with the slow and fast pathways of a dual-
pathway ANN. Our results highlight functional specificities
across visual areas in processing motion-defined objects,
suggesting variability in how different brain regions handle
slow and fast temporal cues during dynamic object percep-
tion.
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