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Abstract

Decision-making under uncertainty can require dynamic
updating of beliefs about the state of the world over
time. While previous work has often used two-alternative
forced choice tasks to investigate this process, here we
introduce a novel mouse-tracking paradigm that tracks
belief updating in real time . Participants (N=30) adapted
their belief updating across environments with low and
high levels of volatility in keeping with a normative model
employing a non-linear form of evidence accumulation,
and exhibited slow-timescale belief updating dynamics
that substantially lagged those observed on a simple
sensory-motor task with matched motor requirements.
Interrogation of single-subject belief dynamics also re-
vealed marked individual differences: while some partic-
ipants produced a highly-resolved range of reported be-
liefs consistent with the normative model, others exhib-
ited strong clustering of beliefs suggestive of a more lim-
ited set of categorical commitment states. These findings
highlight the sensitivity of mouse-tracking to otherwise
hidden individual differences in belief updating, showcas-
ing a novel tool for dissecting computational and neural
mechanisms of this key cognitive function
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Task and Modelling

Thirty human participants completed a belief-updating task
(Fig. 1) adapted from and , observing a continuous sequence
of stimuli with spatial locations (polar angles) generated from
one of two Gaussian distributions. Participants inferred the
generative source of each stimulus, which changed over time
with hazard rate H, and continually reported the direction and
strength of their belief by moving a mouse cursor along a hori-
zontal scale. All participants completed separate blocks of this
task under low (H=0.05) and high (H=0.2) volatility, as well as
a sensory-motor control task where they tracked a marker the
location of which reflected the dynamic belief of a normative
model (Glaze et al., 2015) performing blocks of the primary
belief updating task. We fit this model to each participant’s
mouse-tracking data from the belief updating task:
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Figure 1: Perceptual decision-making task with within-trial
change-points.

where L, is the posterior belief after accumulating evidence
sample n, LLR,, is the evidence (log likelihood ratio) carried
by that sample and vy, is a non-linear, H-dependent trans-
formation of L, into a prior belief for the next sample. Fits
included subjective H and decision noise as free parameters
and allowed us to assess the extent to which participants’ be-
lief updating, as reflected in cursor movements, aligned with
the (H-biased, and noisy) normative model (Fig.2)
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Figure 2: Stimuli (top), mouse cursor positions and model-
estimated beliefs (bottom) for an example participant/block of
the belief updating task (H=0.05).

Adaptation to Volatility

Participants adapted their belief updating across volatility lev-
els in line with the normative model, as reflected in both the
fitted subjective H parameters (mean=0.043 * s.e.m.=0.008



at low volatility compared to 0.075 £ 0.01 at high volatility;
pi0.001), and the measured cursor updates. We assessed
the latter by fitting a regression model to cursor positions 1.95
s after sample onset (when updates were usually complete),
separately for each level of volatility:
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where CPP corresponds to the change-point probability
(a form of surprise) associated with each sample and the
LLR:CPP interaction term approximates the effect of the
non-linear transformation on belief updating in the norma-
tive model (c.f. Murphy et al., 2021). The estimated influ-
ence of previous-sample belief on the updated cursor position
(B1) was stronger under low compared to high volatility con-
ditions, whereas the converse was true for the influence of
new evidence (B 2; Fig. 3) - reflecting an adaptive, volatility-
dependent weighting of prior relative to new evidence consis-
tent with the normative model (dashed lines). Modulations of
evidence weighting by CPP (33) were present in both condi-
tions and, consistent with previous work on 2AFC versions of
our task , were significantly larger than expected from fits of
the normative model (p <.001).
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Figure 3: Coefficients from regression model predicting

mouse cursor position. Bars are from human participants;
dashed lines are predictions from normative model fits (with-
out noise).

Belief Updating Dynamics
We segmented the horizontal cursor position time-series from
0-2 s around onset of each sample n, computed time-resolved
single-trial Pearson correlations between cursor position and
model-estimated posterior belief Ln, and fit an exponential
function to the normalized (min-to-zero, max-to-1) trajectories
of correlation coefficients 7,0/ :
— 0if t<ton
{ (4)
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where 7,n and T are the onset time and timescale, respectively,
of cursor position updates in response to a new evidence sam-
ple (or marker movement, in the case of the sensory-motor
task). There was a marked increase in cursor update T and,
to a lesser extent, ton during belief updating compared to

sensory-motor tracking (Fig. 4). The between-task differences
in these measures specifically capture belief updating dynam-
ics controlling for sensory and motor processes and were sub-
ject to substantial individual differences in our data.
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Figure 4: Time-resolved correlations of cursor position with
posterior belief (a) and timescale and onset parameters from
exponential fits to the trajectories (b).

Belief Clustering

We also observed that single participants tended to use the
belief scale highly consistently across volatility conditions,
but that there were substantial differences across individu-
als. Some participants (examples 1, 3 in Fig. 5) showed
a highly resolved range of beliefs that were broadly consis-
tent with the distribution of beliefs from the normative model.
Others (examples 2, 4, 5) demonstrated strong clustering of
cursor positions beyond model predictions, consistent with
more categorical states of commitment. We posit that this
behaviour may be consistent with a simple form of neural at-
tractor model capable of reproducing approximately normative
decision-making on this task (Murphy et al. 2021).
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Figure 5: Histograms of observed cursor positions from ex-
ample participants, overlaid on histograms of posterior beliefs
from model fits. Significance markers indicate locations of sig-
nificant clustering in data relative to model.
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