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Abstract 19 

Understanding how the brain stores and 20 
manipulates linguistic information in working 21 
memory is central to understanding human 22 
cognition. Can we characterize the format of 23 
linguistic information storage in working 24 
memory? In this magnetoencephalography (MEG) 25 
study, participants read one-word, two-word, and 26 
five-word noun phrases followed by a matching 27 
task with a visual image. We found that individual 28 
word representations were maintained in neural 29 
activity for variable durations, depending on 30 
upcoming compositional demands. Critically, 31 
during a delay period following phrase reading, 32 
we observed a transition from word-specific to 33 
more abstract neural codes, with activity scaling 34 
alongside semantic complexity—suggesting 35 
compression of linguistic information. Retrieval 36 
dynamics revealed that access to surface-level 37 
properties was faster than to deeper semantic 38 
features, consistent with a decompression step. 39 
Finally, in ongoing work we explore potential 40 
contributions of reactivations —including 41 
coactivations and sequential replays— and 42 
oscillatory mechanisms such as phase-amplitude 43 
coupling, to the memory process. Together, these 44 
results map out the trajectory of linguistic 45 
processes, from online composition, through 46 

working memory storage, to retrieval. These 47 
findings place strong computational and 48 
biological constraints on models of linguistic 49 
working memory and could inform the design of 50 
new memory architectures in artificial 51 
conversational systems. 52 
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Introduction 56 

Humans uniquely possess the ability to bind successive 57 
words into novel, meaningful phrases. Yet, how the brain 58 
performs such composition—how individual word 59 
meanings are combined and represented in neural 60 
assemblies—remains an open question. Prominent 61 
computational theories, such as tensor-product 62 
representations (Smolensky, 1990), propose that phrases 63 
are encoded as vectorial structures that reflect both the 64 
meaning of individual words and the relations between 65 
them. These models exemplify factorized codes (Behrens 66 
et al., 2018), in which each component (e.g., word or 67 
syntactic role) can be recovered through linear 68 
operations. In contrast, compression is a general principle 69 
observed across cognitive domains, including auditory 70 
(Planton et al., 2021), and geometrical (Al Roumi et al., 71 
2021) sequences. It suggests that the brain actively seeks 72 
compact representations that preserve meaning while 73 
minimizing redundancy. Under this hypothesis, the neural 74 



code for a phrase may no longer maintain linearly 75 
decodable traces of individual words. Instead, retrieval 76 
could require a decompression step, i.e., a specific 77 
operation applied to the memorandum that recovers the 78 
full representation. A core question, then, is whether 79 
linguistic phrases are stored as factorized 80 
representations—where individual word features remain 81 
linearly separable—or in a compressed form that 82 
integrates and reduces semantic redundancy.  83 
Additionally, working memory representations may be 84 
either active (sustained neural firing) (Goldman-Rakic, 85 
1995; Leung et al., 2002) or silent (maintained via 86 
synaptic traces) (Stokes, 2015; Stokes et al., 2020). While 87 
silent mechanisms may suffice for passive storage, active 88 
neural patterns are likely required during composition and 89 
manipulation (Trübutschek et al., 2019), predicting 90 
distinct neural dynamics as phrases unfold. To tackle 91 
these questions, the present MEG study builds on 92 
previous work (Desbordes et al., 2024) that examined the 93 
neural instantiation of short noun phrases in working 94 
memory. In this dataset, participants read one-, two-, or 95 
five-word phrases describing colored shapes and judged 96 
whether a probe image matched the preceding phrase 97 
(Figure 1). Multivariate decoding was then applied to 98 
MEG signals to unravel the evolution of neural 99 
representations during three distinct phases: encoding, 100 
retention, and retrieval.  101 

Figure 1: Study overview 102 

Results 103 

We trained logistic regression classifiers to decode 104 
individual words, separately for each category (e.g., 105 
one shape noun versus the other two), at each time 106 
point during the trial, yielding a time course of 107 
decoding performance. The decoding performance 108 
quickly rises after word presentation (Figure 2 Top) 109 
and is then maintained for longer when the word 110 

must be combined with upcoming words (not 111 
shown). The decoding performance then goes back 112 
to chance during the delay that precedes image 113 
presentation. To characterize neural activity during 114 
the delay period, we trained a linear regression 115 
model to predict a complexity score for each trial, 116 
based on the number of unique words in the phrase. 117 
Phrases containing entirely distinct words (e.g., 118 
“green circle right of red triangle”) were assigned a 119 
complexity score of 2, while those with maximal 120 
repetition (e.g., “blue square left of blue square”) 121 
received a score of 0. The regression model 122 
successfully predicts the phrases complexity all 123 
along the delay (Figure 2 Bottom). In additional 124 
analyses not included in this short manuscript, we 125 
show that neural activity during the delay period 126 
scales with this complexity measure, dissect the 127 
temporal dynamics of representations using 128 
temporal generalization, and demonstrate that 129 
retrieval is modulated by properties of the 130 
memoranda. 131 

132 

 133 
Figure 2: Decoding time courses  134 

Top: decoding of individual words. 135 
Bottom: regression decoding of the complexity of the 136 

sentence (number of unique words). 137 

Discussion 138 

Overall, our results support a compressed memory code. 139 
The storage format of phrases is such that individual 140 
properties are not linearly decodable, and computation is 141 
necessary to access all the information about the 142 
memorandum, akin to a decompression operation. While 143 
factorized codes have theoretical appeal (Bernardi et al., 144 
2020) and are observed in nonhuman primates (Tian et 145 
al., 2024) and humans (Fan et al., 2025), they do not fit 146 
our MEG data. However, our results are compatible with 147 
other models of composition such as Vector-Symbolic 148 



Architecture (Eliasmith & Anderson, 2003; Kleyko et al., 149 
2022). Moving forward, we are currently extending this 150 
work along three major axes:  151 
(1) the source localization of the identified effects, 152 
especially the compressed working memory code, 153 
 (2) the support of the memory trace by spontaneous 154 
reactivations, hypothesizing that the code is silent most of 155 
the time but reactivated intermittently, potentially with 156 
structure (e.g., sequential replay or coactivation of bound 157 
words), and  158 
(3) testing whether the theta–gamma phase-amplitude 159 
coupling model of sequence memory (Heusser et al., 160 
2016; Lisman & Idiart, 1995) applies to linguistic working 161 
memory: How many memory slots does a noun phrase 162 
occupy—one per word, or one in total due to 163 
compositional binding?    164 
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