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Abstract: 
The field of deep learning is continuously developing 
novel neural network architectures, from residual 
connections in CNNs (He et al., 2016) to vision 
transformers with self-attention mechanisms 
(Dosovitskiy et al., 2020). While these advances appear 
to increase models' visual capabilities, it remains unclear 
whether modern architectures are becoming more brain-
aligned. To address this question, we examined an 
Inanimate Objects neuro-imaging dataset with reliable 
neural responses to 72 inanimate objects in early visual 
cortex (EarlyV), posterior occipito-temporal cortex 
(pOTC), and anterior occipito-temporal cortex (aOTC). 
We compared alignment between model feature spaces 
and voxel-space using classic, unweighted 
representational similarity analysis. We included top-
performing models on the Brain-Score platform 
(Schrimpf et al., 2018) and a leading visual foundation 
model (DinoV2, Oquab, 2023). We found that an AlexNet 
baseline model (Krizhevsky et al., 2012) matches or 
exceeds these models in alignment with each brain 
region, with substantial reliable variance in aOTC 
remaining unexplained by any model. These results 
suggest that progress in deep neural network 
development is missing key aspects of high-level visual 
representation in the human brain.  

Keywords: model-brain alignment; representational 
similarity analysis; deep neural network models; AlexNet; 
vision-transformers; fMRI 

Introduction 
To what degree have modern deep neural networks 

converged on more (or less) brain-like representations 
than the seminal AlexNet (2012) model? While there 
have been many large-scale benchmarking efforts that 
broadly address this question (Conwell et al., 2024; 
Schrimpf et al., 2018), here we focus on a smaller, 
targeted neural dataset with neural responses to 72 
Inanimate Objects (Konkle & Alvarez, 2022). This 
dataset (Fig. 1A) is interesting for a number of reasons:  

(1) The data were collected with an optimized fMRI 
protocol, resulting in individual subject representational 
geometries that are reliable and consistent across 
subjects, yielding highly reliable group-averaged 
representational geometries that provide a robust target 
to predict with different deep neural networks. (2) 
Because the animate/inanimate divide is essentially 
principal component #1 in neural response variation 
(Konkle & Caramazza, 2013), capturing the structure 
within inanimate-objects only requires models to 
capture more fine-grained or local structure. (3) Early 
work showed that there was substantial variance in this 
neural dataset that remained unexplained by 
convolutional neural network models, particularly in the 
anterior ventral stream (Konkle & Alvarez, 2022).  

Thus, our goal in the present work is to assess 
whether there has been any progress in model-brain 
alignment for this Inanimate Objects Dataset, focusing 

specifically on emergent alignment between model 
feature spaces and voxel-spaces in three different 
neural sectors (early visual cortex, EarlyV; posterior 
occipito-temporal cortex, pOTC; anterior occipito-
temporal cortex, aOTC). To compare model and brain 
representations, we used classic, unweighted 
representational similarity analysis (Kriegeskorte, 
2008), computing representational dissimilarity 
matrices (RDMs) directly in the model-activation space, 
and voxel-space, then comparing matrices using 
Pearson correlation (among scores in the upper-
triangular portion of the RDMs). We focus on 
unweighted RSA, rather than a procedure that allows 
linear re-weighting of features (e.g., voxel-wise 
encoding RSA; Konkle & Alvarez, 2022) to avoid 
complexities in interpretation that arise with more 
flexible neural-linking procedures (Prince et al., 2024; 
Lindsay, 2021). 

Methods 

 
Neural Data: The Inanimate Objects fMRI Dataset 

(Fig. 1A) contains fMRI responses from ten participants 
viewing 72 inanimate objects presented on white 
backgrounds. Responses were divided into three 
sectors: EarlyV, pOTC, and aOTC (see Konkle and 
Alvarez, 2022 for details). 

Model selection. AlexNet (2012) was used as our 
baseline model. To constrain the selection of target 
models, we selected models based on current (April, 
2025) rankings on the brain-score platform (Schrimpf et 
al., 2018), including the top 5 overall neural models, and 
the top 5 models on sub-scores for V1, V4, and IT 
alignment. We also included a recent visual foundation 
model (DinoV2; Oquab, 2023) to assess progress for 
models that achieve current state-of-the-art on 
computer-vision benchmarks unrelated to brain 
alignment.  

Unweighted Representational Similarity Analysis. 
We computed model RDMs by passing the 72 objects 
through each model and calculating dissimilarity (1-

 
Figure 1. A) The 72 Inanimate objects, and view of 
EarlyV, pOTC, and aOTC ROIs on the ventral surface of 
an inflated cortex. B) The representational similarity 
analysis procedure. 



pearsonr) between activations for all item pairs. Neural 
RDMs were computed similarly using voxel responses. 
Model-brain alignment was quantified as the Pearson 
correlation between their respective RDMs. 

Cross-validated best-layer identification. To identify 
each model's "maximally-aligned layer" with neural 
responses, we used a cross-validation procedure 
(Konkle & Alvarez, 2022). Neural data were split into 
halves to compute mean RDMs separately for each 
group. Pearson correlation was calculated between 
each model layer RDM and the Group1 neural RDM, 
selecting the layer with highest correlation. This layer's 
correlation with the independent Group2 RDM was then 
taken as the model’s maximum correlation with the 
given brain region. We repeated this procedure across 
all possible subject split-halves, taking the average as 
our cross-validated max-r measure. 

Results 
Across the board, AlexNet (2012) shows equivalent 

or greater alignment with visual responses to inanimate 
objects compared to all models in our analysis. Figure 
2 shows results by brain region, with AlexNet in light 
grey (left). Other models are grouped by brain-score 
ranking (blue: top-5 overall neural score; orange: top-5 
IT score; green: top-5 V4 score; purple: top-5 V1 score). 
DinoV2 appears in dark grey (right). No tested model 
shows stronger alignment than AlexNet in any brain 
region. In most cases, AlexNet demonstrates 
significantly greater brain alignment (paired t-tests over 

all split-halves with a correction for non-independence, 
following Bouckaert & Frank, 2004). 

Discussion 
We found that the baseline AlexNet model shows 

equal or significantly stronger alignment with ventral 
stream responses to a set of 72 inanimate objects than 
leading brain-score models or recent vision foundation 
models. Thus, models with advanced features like 
residual connections (ConvNeXt, Liu et al., 2022), multi-
head attention (ViT), or large-scale training (DinoV2) 
showed equal or worse brain-alignment than AlexNet.  

These results are somewhat surprising because 
this set of models includes the most brain-aligned 
models on the brain-score benchmark, including the 
leading models for IT cortex predictivity (Schrimpf et al., 
2020). One possible explanation for this finding is that 
the current work used classical RSA without feature re-
weighting, whereas many of the brain-score scores 
involve a linear re-weighting of features. Here we 
focused on unweighted RSA because it avoids some of 
the complexities in interpretation that arise when re-
weighting is allowed. Nevertheless, an important 
avenue for future work is to examine whether AlexNet 
remains the most brain-aligned model for the Inanimate 
Objects dataset when different model-to-brain linking 
procedures are used, such as voxel-wise encoding 
RSA (veRSA; Konkle & Alvarez, 2022), or sparse-
positive encoding RSA (spRSA; Prince et al, 2024). 

These results are also somewhat inconsistent with 
prior large-scale benchmarking showing that AlexNet 
does not have stronger alignment with OTC responses 
to the Natural Scenes Dataset (Conwell et al., 2024). 
Unlike NSD (Allen et al., 2022), which spans animate 
and inanimate categories, our dataset focuses on 
exclusively inanimate objects, suggesting that AlexNet 
may better capture fine-grained structure within the 
inanimate domain compared to state-of-the-art 
architectures optimized for ImageNet performance. 

Our broader goal was to examine whether 
enhancements in deep neural networks lead to more 
brain-aligned object responses, focusing on the 
Inanimate Objects Dataset. Our results indicate that 
deep neural network advances since AlexNet have not 
improved emergent brain-alignment for this specific 
dataset, particularly in anterior ventral stream regions 
(aOTC). We propose that specifically biologically-
inspired model variations may be required to go beyond 
the early successes of task-optimized convolutional 
neural networks (Yamins, et al. 2014) in capturing high-
level object representation in the human brain. More 
generally, these results suggest that smaller datasets 
that target restricted domains may serve as valuable 
targets for NeuroAI research focused on model-brain 
alignment. 

 
 

Figure 2. Cross-validated best-layer correlation between 
model RDMs and neural RDMs for each brain region. In 
each brain region, AlexNet (light grey, left) shows 
equivalent or greater alignment than all tested models 
including top brain-score models (colored bars), and 
DinoV2 (dark grey, right). The shaded gray regions at the 
top represent the brain-vs-brain noise ceiling (+/- 95% CI). 
Error bars show 95% CI over split-halves. 
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