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Abstract 
Rhythmic neural activity has been widely observed 
across cognitive domains, including language. Yet, 
debate continues on how such activity supports 
speech processing: entraining to external stimuli for 
optimised tracking, or driving the generation of 
internal representations. By introducing graded 
sensory entrainment to a fixed oscillator model of 
Ten Oever and Martin (2021), our study examined 
how it influences phase coding—the timing-based 
differentiation of word nodes from internal 
feedback—and how these codes bias ambiguous 
input interpretation. Simulations show that moderate 
coupling supports reliable phase coding while 
preserving sensitivity to unexpected inputs. Our 
model shows how the brain could coordinate 
top-down linguistic representations with bottom-up 
sensory processes during speech processing. 

Introduction 
Neural oscillations, linked to fluctuations in network 
excitability, are implicated in speech comprehension 
(e.g., Meyer, 2018), but their exact role remains debated. 
Some prior models emphasise entrainment to stimuli for 
efficient tracking (e.g., Giraud & Poeppel, 2012), while 
others focus on internally driven predictions (e.g., Ten 
Oever & Martin, 2021). Despite proposals that both 
mechanisms interact (Meyer, Sun, & Martin, 2019), they 
are rarely unified in modelling. Our study integrates them 
by extending an existing STiMCON model (Ten Oever & 
Martin, 2021) with graded sensory entrainment via a 
dynamic systems approach to address this divide. 

       Method 
The STiMCON model of Ten Oever and Martin (2021) 
implemented fixed oscillations to drive internal 
representations of employed word nodes. In STiMCON, 
word nodes are sensitised (i.e., their activity heightened) 
by top-down predictive feedback from an internal 
language model so that more predictable words activate 
earlier as oscillatory activity peaks, thereby optimising 
speech processing in a top-down manner. 

Here, we extended the STiMCON 
model—hereafter referred to as STiMCON+1—by 
explicitly incorporating sensory entrainment to improve 
sensitivity to bottom-up input. STiMCON+ comprises 
three layers: STIMULUS (external input), MAIN 
(oscillating word nodes), and PREDICTION 
(language-based feedback). All the other model 
parameters used here were identical to STiMCON. MAIN 
layer activation is influenced by both other layers. 
Sensory entrainment was introduced via Stuart–Landau 
equations (e.g., Doelling & Assaneo, 2021), with 
coupling strength  determining the influence of sensory 𝐾
input on internal dynamics. External input modulates the 
oscillator’s velocity, producing a phase shift that in turn 
adjusts the timing of feedback activation. 
 

 
 

Figure 1. Schema of STiMCON+ 
 
 Simulations used a five-node language model (I, 
eat, very, nice, and cake) with context-driven 
predictabilities (e.g., after eat: cake = 0.5, nice = 0.3, 
very = 0.2), proportionally to which the PREDICTION 
layer generates feedback to the MAIN layer. We tested 
the model’s (oscillator frequency = 4 Hz) behaviour 
under varying  levels using isochronous and 𝐾
non-isochronous 4-Hz input streams for oscillator 
entraining. Non‐isochronous inputs had onsets randomly 
drawn from a uniform interval around the isochronous 
timing. The seventh input eat engaged the language 
model to trigger feedback. We assessed three aspects 
under varying coupling strengths. First, we evaluated 
whether top-down feedback activation scaled with word 
predictability. Second, we measured temporal phase 
codes—the differences in feedback activation timing 
among word nodes. Third, we tested ambiguous input 
categorisation by varying both the degrees of ambiguity 
(between cake and nice) and onset delays (relative to 
the offset of a prior input). In this case, an ambiguous 

1 Code can be found: 
https://github.com/Rong-Ding/Coupled_STiMCON 



input was presented after the seven-input stream (for 
oscillator entrainment). These three measures allow for 
evaluating the strength of internal representations and 
their influence on bottom-up processing. 

Result  
The presentation of both isochronous and 
non-isochronous stimuli yielded similar trends. Increased 
sensory coupling amplified feedback activation for more 
predictable word nodes (e.g., cake) and suppressed it 
for less predictable ones (e.g., very) (Figure 2A). 
Temporal phase codes between word nodes cake and 
nice became more stable (i.e., overall smaller temporal 
differences) under stronger coupling (Figure 2B). 
Ambiguous input categorisation became more 
deterministic and strongly dependent on input timing 
under increased coupling (Figure 2C). Notably, these 
effects converged more rapidly with isochronous inputs, 
likely because regular stimuli produce less variable 
phase shifts. 

Discussion and Conclusion 
Our simulations indicate that increasing the coupling 
strength between the internal oscillator and external 
sensory inputs enhances the reliability of feedback 
activation for highly predictable word nodes while 
reducing feedback for less predictable ones. Stronger 
coupling produces robust phase shifts—which stabilise 
temporal phase codes—but at the cost of flexibility, 
potentially leading the model to miss less expected 
inputs. Conversely, moderate sensory entrainment 
allows the model to balance top‐down predictions with 
bottom‐up variability, enabling it to bias ambiguous input 
categorisation without becoming overly deterministic. 
Together, these findings support the argument that 
moderate coupling is optimal for effective speech 
tracking, as it preserves reliable phase coding while still 
accommodating variable and unpredictable input. 

 

 
 
Figure 2. Model performance with 4-Hz isochronous and non-isochronous stimuli. (A) Activation percentages of 
predicted word nodes across coupling strengths (1000 iterations). (B) Feedback activation time differences between 
“cake” and “nice” (100 random datapoints plotted per K). (C) Proportion of first-activated nodes across onset delay 
and stimulus proportion (red: “cake” and blue “nice”; shade: the proportion of a word node as first active). Y-axis: 
Proportion of cake in the ambiguous input as a mix/morph of the stimuli cake and nice. 
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