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Abstract

Working memory is a fundamental cognitive function
that allows us to transiently store and manipulate rele-
vant information in memory. While traditionally associ-
ated with localized prefrontal activity, recent electrophys-
iological and imaging studies reveal distributed activity
across multiple brain regions. To uncover the mecha-
nisms behind this distribution, we developed a detailed,
data-constrained model of the human brain by integrating
diverse large-scale datasets. Our model demonstrates
that distributed working memory patterns emerge primar-
ily through long-range synaptic projections rather than
solely from local recurrent connectivity. We found that the
network operates optimally near a critical region at the
edge of a bifurcation, consistent with recent experimen-
tal and modeling findings, and explains approximately
60% of the observed variability among brain areas in-
volved in working memory. Furthermore, simulations of
task-specific conditions, such as verbal and spatial work-
ing memory, indicate that high agreement with experi-
mental data is achieved only when higher cortical re-
gions modulate the network or when recurrent connec-
tivity is enhanced across multiple circuits. These results
suggest that working memory performance is the prod-
uct of an interplay between distributed projections and
context-dependent modulation, offering new insights into
the neural substrates of human cognition.
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Introduction

Working memory is a flexible cognitive function that en-
ables temporary storage and manipulation of sensory infor-
mation, underpinning tasks like decision making, reasoning,
and learning. Moreover, its dysfunction has been implicated
in various psychotic disorders, such as schizophrenia (Forbes,
Carrick, McIntosh, & Lawrie, 2009), hence uncovering its neu-
ral substrates could advance efforts to find better treatments.

Human neuroimaging, alongside systematic multi-region
recordings in non-human primates (Christophel, Klink,
Spitzer, Roelfsema, & Haynes, 2017; Leavitt, Mendoza-
Halliday, & Martinez-Trujillo, 2017), and rodents (Voitov &
Mrsic-Flogel, 2022), has revealed that working memory en-
gages a distributed network of brain regions. Moreover, dis-
tinct working memory tasks appear to recruit different neural
circuits, suggesting a more complex, regionally varied process
(Volle et al., 2005; Cohen et al., 1997). Although compu-
tational models have begun to propose mechanisms for dis-
tributed working memory in non-human primates (Mejı́as &
Wang, 2022) and rodents (Ding, Froudist-Walsh, Jaramillo,
Jiang, & Wang, 2024), the underlying processes in the human
brain remain largely unexplored. This emerging perspective
calls for integrative approaches to better understand how di-
verse brain regions coordinate to support working memory.

Methods

To build a detailed, data-constrained computational model of
the human brain and explore distributed working memory, we
integrated three complementary datasets: (i) a parcellation-
based structural connectome using the ’Schaefer 200’ corti-
cal parcellation (Jung, Eickhoff, & Popovych, 2022; Schae-
fer et al., 2018) (ii) intracortical myelin content measured via
T1w:T2w maps to infer hierarchical relationships between ar-
eas (Glasser et al., 2016; Demirtaş et al., 2019), and (iii) a
PET-derived brain map of NMDA receptor density (Hansen et
al., 2022). This approach allowed us to constrain our model at
multiple levels. The model comprises a network of 100 cortical
areas from the left hemisphere, interconnected by projections
whose strength is based on previous human connectivity data
(Jung et al., 2022; Schaefer et al., 2018) and modulated by
a global coupling parameter (G). Each area is represented by
a simplified circuit model (Wong & Wang, 2006) featuring two
excitatory populations (selective for visual stimuli A and B) and
one inhibitory population (Figure 1A). We introduced direc-
tional connections using intracortical myelin data: feedforward
projections preferentially excite target areas, while feedback
projections slightly bias inhibitory populations (parameter α).
Area-specific heterogeneity was introduced using NMDA re-
ceptor density data (Hansen et al., 2022) to modulate local
recurrent excitation (Figure 1B).

Results

To simulate a generic working memory task, a one-second
cue activated excitatory population A in early visual cortex,
and during the delay period, activity spread to frontal, tempo-
ral, parietal, and occipital regions (Figure 1C, D). Rather than
relying on local attractor dynamics (Wang, 1999; Compte,
2006), distributed working memory emerged via long-range
interactions. The model produced a nonlinear activity pro-
file: about 35 areas maintained only spontaneous firing, while
roughly 40 areas sustained firing rates above 15 spikes per
second (Figure 1E). This resulted in heterogeneous dynam-
ics, with early sensory areas rapidly decaying after the cue,
whereas regions such as ’Default PFC 10’ and ’Default PFC 6’
maintained persistent, stimulus-selective activity (Figure 1F).

Such activity patterns emerge when global coupling
strength and feedback inhibition are finely balanced, position-
ing the system at a critical threshold between over-excitation
and low network activity (Figure 2). The apparent gap in
the parameter space represents states in which the activity
is dominated by the population non-selective to the presented
stimulus (Pop B), in a winner-takes-all regime.

To reproduce neural activity observed in task-specific ex-
periments (e.g. verbal and spatial working memory), we had
to either increase local self-excitation, hence inducing local
bistability, or to introduce top-down modulation via a GO sig-
nal presented to higher cortical areas.



Figure 1: Distributed working memory patterns emerge in a human brain model. (A) Human brain connectome and local model
used. (B) Maps of cortical NMDA receptor density. (C) Working memory task employed in our study. (D) Brain activity maps
during task. (E) Firing rates for each area in the model during the delay period. (F) Temporal evolution of selective firing rates. A
visual stimulus, for which the excitatory population A is selective, is received for 1 second.

Figure 2: Trials-averaged number of areas showing persis-
tent activity in the stimulus-selective population (Pop A) as a
function of the global connection strength (G) and the level of
feedback inhibition (α).

Discussion
Our model allows, for the first time, to integrate biologically
plausible full-brain dynamics with mechanistic functionalities
linked to a cognitive function in humans. It suggests that
working memory depends on long-range projections, comple-
mented by context-dependent modulatory signals and task-
specific neural circuits. The present study also provides pre-
dictions that could be tested experimentally to investigate the
neurobiology of working memory. We foresee that this new
type of models will play an important role in our understand-
ing of distributed cognitive processes in humans.
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