High-Level Perceptual Learning for Initially Ambiguous Stimuli

Logan T. Dowdle (logan.dowdle@maastrichtuniversity.nl) & Mario Senden (mario.senden@maastrichtuniversity.nl)

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616
Maastricht, 6200 MD, Limburg, The Netherlands

Abstract

Perceptual skills are frequently studied using simple
stimuli like Gabor patches to isolate basic perceptual
mechanisms. However, in everyday expert decision-
making, perceptual skills are deeply intertwined with
higher-order cognition and semantic knowledge. For ex-
ample, pathologists must accurately distinguish between
various tissue types by interpreting complex visual pat-
terns in microscopy images. To investigate how per-
ceptual and semantic representations emerge for initially
ambiguous stimuli and interact in the brain, we con-
ducted a high-resolution 7T fMRI pilot study in which
a lay participant learned to distinguish tissue with high
and low tumor-infiltrating lymphocyte (TIL) count from
histopathology images. The participant underwent daily
perceptual training with feedback, paired with at-home
semantic study of cancer types. fMRI data were col-
lected in five sessions distributed over the training pe-
riod wherein the participant performed a TIL classifica-
tion task. This allowed us to track behavioral learning
and corresponding changes in cortex-wide neural repre-
sentations.
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Introduction

Perceptual skills are frequently studied using simple stimuli
like Gabor patches to isolate basic perceptual mechanisms
(Adini, Sagi, & Tsodyks, 2002; Schoups, Vogels, Qian, &
Orban, 2001; Lange, Senden, Radermacher, & De Weerd,
2020). While this approach has yielded valuable insights into
the foundational aspects of perception, it does not capture the
complexity of perceptual skills as they operate in real-world
contexts (Tsushima, Sawahata, & Komine, 2020). For exam-
ple, a sommelier not only discriminates between wines based
on subtle sensory cues but also recalls detailed semantic in-
formation about each wine’s composition, origin, and ideal
food pairings. Similarly, pathologists must accurately distin-
guish between various tissues under different disease con-
ditions. This perceptual discrimination is closely linked with
semantic knowledge about diseases, including typical symp-
toms, prevalence, and prognostic implications. Despite the
critical importance of integrating perceptual and semantic in-
formation, it is currently not well established how low-level per-
ceptual skills relate to semantic knowledge at the neural level.

We provide a pilot investigation into this issue by examin-
ing how perceptual expertise develops in a complex, seman-
tically rich domain and how it is reflected in neural represen-
tations across the cortical hierarchy. Specifically, we trained a

lay participant to discriminate histopathology images of can-
cerous tissue according to tumor infiltrating lymphocyte (TIL)
density and simultaneously exposed them to semantic infor-
mation about cancer types. Functional MRI data were col-
lected at 7 Tesla while the participant performed a TIL classifi-
cation task. A total of five scan sessions were distributed over
the learning period. Using representational connectivity (RC),
a measure of pairwise similarity between region-specific rep-
resentational geometries, we show a progressive alignment of
representations between early visual, high-level visual, atten-
tion, cognitive control and motor planning regions.

Methods

A single participant (Male, 39 years old) naive to pathology
completed the experiment over a period of 4 weeks.

Stimuli

We used a subset of a publicly available collection of whole
slide microscopy images containing high and low tumor-
infiltrating lymphocyte (TIL) counts (Abousamra et al., 2022).
We split the dataset into at-home training and in-scanner stim-
ulus groups, uniformly drawn from 12 cancer types.

Figure 1: Example stimuli Left and right column show exam-
ples of low and high TIL counts, respectively. Top row shows
lung and bottom row ovarian tissue.

Offline Training

At home training used 1,158 stimuli with PsychoPy (Peirce et
al., 2019). This involved a repeated presentations of a single
image, which remained on screen until the participant indi-
cated a high or low TIL count. The script then provided feed-
back and reported cancer type. The participant completed 17
sessions and also used online resources to gain expertise.



fMRI Procedures and Processing

We performed 5 imaging sessions during a 4-week period.
The first session occurred before any training. Each image
was presented for 4.5s with a 1s blank during which the sub-
ject indicated high/low TIL via a button press (no feedback).
Following an inter-stimulus interval (0 to 4.5 s, drawn from
Poisson), the procedure repeated. 140 stimuli (3 repetitions)
were shown per session, 120 repeated across all sessions
and 20 unique to each session for a total of 420 per session.

In each session we collected 10 runs of whole-brain 7T
BOLD data (1.6mm iso., TR:1.5s, TE:21.2ms, 84 slices) with
238 volumes and anatomical images.

Preprocessing used AFNI (Cox, 1996) and ANTS (Avants,
Epstein, Grossman, & Gee, 2008) for slice-timing, distortion
and motion correction and run/session/anatomical alignment.
The anatomical data was processed with FreeSurfer’'s (Dale,
Fischl, & Sereno, 1999) recon-all (version 8.0.0beta) to gen-
erate cortical surfaces and align to fsaverage. We used glms-
ingle (Prince et al., 2022) to estimate single trial betas. These
betas were projected into fsaverage space and analyzed us-
ing the Glasser atlas (Glasser et al., 2016).

Results

Behavioral Results

To assess learning, we analyzed the participant’s accuracy in
discriminating between high and low TIL counts using a bino-
mial GLM with correctness of trial-level responses as outcome
and session, cancer (tissue) type and their interaction as pre-
dictors. Wald tests revealed a significant overall improvement
in accuracy across the five sessions (main effect of session:
Wald %2 (1) = 10.15, p = 0.0014). Importantly, the learn-
ing effect differed per cancer type with a significant interac-
tion between session and cancer type (Wald 32 (11) = 32.37,
p = 0.0007). Follow-up simple effects analyses per cancer
type indicated that this learning effect was driven by signif-
icant improvements in classification accuracy over sessions
specifically for liver (z = 4.9, p < 0.001), prostate (z = 2.2,
p =0.03) and breast (z = 3.2, p = 0.001) tissue.

Representational Connectivity

To assess the progression of representational geometries
across the cortex and time, we computed RC in each ses-
sion. To that end, we first obtained representational dissimilar-
ity matrices (RDMs) within each ROI for the 120 stimuli shown
in every session using a correlation-based distance metric.
Representational connectivity is then the similarity between
RDMs of every pair of ROls, here quantified using Spearman’s
p. We performed a regression to assess whether connections
exhibit a linear trend over sessions for each pair of ROIs and
established significance of linear trends via a bootstrapping
procedure with 50,0000 samples. A total of 126 connections
involving 115 ROIs were significant after Bonferroni correc-
tion. Session 5 RC among the 115 identified ROIs as well as
difference between session 5 and session 1 RC are shown in
Figure 2.
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Figure 2: Representational Connectivity. a RC in session 5
limited to ROIs that exhibit significant connectivity changes
across sessions. ROls are arranged by functional domain.
ROI labels not shown. b Difference in RC between sessions
5 and 1. ROIs and their arrangement as in panel a.

Discussion

Our results provide a first indication that people can learn new
semantic meanings from ambiguous stimuli. We found be-
havioral evidence of this effect in a lab paradigm. Most impor-
tantly, this is accompanied by progressive alignment of rep-
resentations between early visual, high-level visual, attention,
cognitive control and motor planning regions.
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