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Abstract 
The attentional effects of statistical learning and 
intertrial priming have long been treated as separate 
selection history effects. This is despite their many 
similarities, improving performance in the same 
direction. There is thus motivation to either formally 
dissociate these two effects, or unify them under a 
single theoretical framework. We suggest that 
multiple trace theory is the framework to unify these 
two cognitive effects. We used a Kalman filter 
approach to model reaction times while participants 
performed the additional singleton task with biased 
distractor presentations - a paradigm known to 
engender both statistical learning and intertrial 
effects. Initial results suggest this by-trial modelling 
approach aptly captures learning effects and their 
effect on reaction times. Subsequent steps will now 
compare unified versus divided models of intertrial 
priming and statistical learning to provide evidence 
for their dissociation or union. 
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Intro 
Maljkovic and Nakayama in a pair of highly influential 
papers (1994, 1996) identified that spatial and color 
features that repeated in subsequent displays of a visual 
search task greatly improved the performance of 
participants. This effect was dubbed intertrial priming. 
Several years later, it was identified that statistical 
tendencies of a visual search task could be learned by 
participants and automatically incorporated into their 
search behavior, improving performance when these 
regularities are adhered to and impairing performance 
when they were violated. This automatic encoding of task 
regularities was labeled statistical learning. 
 Already in the early works on statistical learning, 
painstaking steps were taken to ensure that the observed 
effect was not one and the same as intertrial priming. This 
was primarily done by demonstrating that the effect 

persisted some time after task regularities were removed. 
In the current research we attempt to demonstrate that 
such persistence can in fact be accounted for in a single 
parsimonious system based on the multiple trace 
accumulation framework (Logan 1988; Los, Kruijne, and 
Meeter 2014; Salet et al. 2022). We propose that the 
accumulation of memory traces with an exponential decay 
function can account for both short term intertrial effects 
as well as long term and persistent statistical learning 
effects using a single priority accumulation function. 

 

Aggregate reaction time results 
 

  
Methods. 80 participants took part in this 
experiment using the online platform Prolific. Data 
cleaning and preprocessing was done in line with 
previous experiments (Duncan, van Moorselaar, and 
Theeuwes 2024). Participants performed a version of 
the additional singleton task with an imbalanced 
spatial distribution of distractors, a paradigm known 
to result in statistically learned suppression (Wang 
and Theeuwes 2018). Participants completed seven 
blocks of the experimental task. The first three blocks 
contained the high-probability distractor location 
which held a distractor on 50% of distractor present 
trials (HP locations counterbalanced across 
participants). Participants next moved on to two 
transfer blocks, where the regularity was removed, 
and distractors now appeared at each location with 
equal frequency. Following two of these transfer 
blocks, the regularity was reintroduced for a final two 
reacquisition blocks.  
Aggregate Behavioral Results. Grand averaged 
reaction times showed that participants reliably 
learned to suppress the high-probability distractor 
location, responding significantly faster when a 
distractor was presented there as opposed to another 
low-probability location (Figure 1).  
Learning, Extinction and Reacquisition. When 
separating trials into learning, transfer and 
reacquisition blocks, we observed that learning was 
only present during the learning and reacquisition 



blocks, and disappeared during the extinction blocks 
(Figure 2). This indicates that participants were able 
to flexibly adjust to changes in the statistical 
regularities underlying the task.  

Figure 1: Grand average reaction times collapsed 
over all blocks in the experiment and separated 
between trials with no distractor, HP distractors and 
LP distractors. Shown on the right is the speedup 
effect calculated by subtracting each participant’s 
average reaction time on LP trials form their average 
reaction time on HP trials. A negative score thus 
represents that that the participant was faster when 
the distractor appeared at the HP location relative to 
any other LP location. Error bars represent within 
subject 95% confidence intervals (Cousineau 2005; 
Morey 2008). 
 

 
Figure 2: The progression of learning over time 
illustrated by plotting average reaction times on 
distractor absent trials, HP distractor trials and LP 
distractor trials separated among mini blocks of 48 
successive trials (1/3 of the 144 trials in an 
experimental block). Error bars are within subject 

standard error. Shaded green area represents the 
period of time in which participants were in the 
transfer phase, where no distractor regularity was 
present.  

Modelling reaction times using a 
Multiple Trace Framework 

Preliminary results have shown that a Kalman filter 
approach can capture trial-by-trial fluctuations in 
reaction times by incorporating previous trial 
information using long-term memory traces. Further 
work will now compare model attributes to elucidate 
whether statistical learning and intertrial effects are 
more parsimoniously accounted for as a unified 
system, or as separate systems working in 
conjunction 

Initial Results 
We used a Kalman Filter approach to model reaction 
time data on a trial-by-trial basis while incorporating 
previous trial information into an iterative internal 
model of the task statistics. Our model varied three 
parameters - attentional enhancement per trial, 
suppression per trial, attention trace decay, 
attentional spread and baseline reaction time. Initial 
results provide variable fits to the data per participant. 
As a next step, we will test whether model fits can 
predict reacquisition when fit to data from the learning 
and transfer phases separately. Next, we will observe 
whether model fits can be improved by providing two 
separate mechanisms to account for short- and long-
term regularities, thereby representing a dissociation 
between statistical learning and intertrial priming. 
Lastly, we will compare a ramp versus hill function to 
model learning, thereby comparing whether behavior 
better matches a model based on gradual implicit 
learning, or sudden explicit realization (Musfeld, 
Souza, and Oberauer 2023). 
 



 

FIgure 3: The conceptual trial-by-trial Kalman filter 
behavior as individual trials generate attention traces 
representing either positive enhancement at target 
locations, or negative suppression at distractor 
locations. The accumulation of traces are integrated 
into an overall priority map represented at the top. 
Trace influence is modeled as a power unction 
wherein recent trial features influence immediate trial 
behavior more than distant trial features. The 
accumulation of trial history will represent the 
statistics underlying the task, which in this visual 
example would be suppression of the rightmost 
location. 
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