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Abstract 
Faces and bodies are key social stimuli processed 
by distinct functional networks in human visual 
cortex. However, growing evidence suggests 
systematic overlap between these networks, 
raising an important question: How segregated or 
integrated are face and body processing? 
Competing hypotheses propose fully segregated 
pathways, varying levels of integration, or a single 
multiplexed system. Here, we test these 
hypotheses using deep convolutional neural 
networks trained on object recognition. A 
functional localizer identified face- and body- 
selective units, as well as mixed-selective units 
that respond to both categories. Decoding 
analyses revealed that face- and body-selective 
units specialize in their respective domains, while 
mixed-selective units encode detailed information 
from both, supporting an integrative role. Finally, 
using fMRI encoding analyses, we found that these 
units account for unique variance in neural 
responses within both distinct and overlapping 
face- and body-selective cortical areas. Our 
findings suggest that face and body networks 
balance segregation and integration, supporting 
both fine-grained recognition and whole-person 
perception. 
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Introduction 
Faces and bodies are crucial for recognizing and 
understanding others. The human visual system is 
thought to process these stimuli in distinct functional 
networks, with specialized cortical areas dedicated to 
face and body perception (Freiwald et al., 2016; 
Peelen & Downing, 2007). However, growing evidence 
suggests systematic overlap between these networks 
(Schwarzlose et al., 2005), raising the question: How 
segregated or integrated are face and body 
processing? Competing hypotheses propose fully 
segregated pathways, varying levels of integration, or 
a single multiplexed system (Taubert et al., 2022). 
Deep neural networks (DNNs) offer a powerful 
framework to test these hypotheses and to explore, 
from a computational perspective, why face and body 
processing might be segregated or integrated 
(Kanwisher et al., 2023). While DNNs develop face- 
and body-selective units (Prince et al., 2024), it 
remains unclear whether they also form 
mixed-selective units that respond to both faces and 
bodies. Here, we examined whether a DNN trained on 
object recognition develops distinct face-, body-, and 
mixed-selective units, assessed their roles in domain- 

specific recognition, and evaluated their capacity to 
predict neural responses in both distinct and 
overlapping face- and body-selective areas. 

Results 
To investigate whether a DNN develops distinct 
mixed-selective units, we analyzed AlexNet 
(Krizhevsky et al., 2012) trained on Ecoset (Mehrer et 
al., 2021). Using a standard fMRI functional localizer 
(fLOC) with six stimulus categories (faces, bodies, 
scenes, characters, objects, and scrambled images; 
Stigliani et al., 2015), we identified face-, body-, and 
mixed-selective units (Fig. 1a). Specifically, in each 
layer, units were classified as face-selective if their 
activations (post-ReLU) to faces exceeded those to all 
other categories in pairwise t-tests (e.g., faces > 
bodies & faces > scenes, etc.; p<.05, FDR-corrected). 
Similarly, units were classified as body-selective if they 
preferred bodies over all other categories, and as 
mixed-selective if they preferred faces over all but 
bodies and vice versa. This analysis revealed distinct 
populations, with face-selective units being the most 
prevalent (max ~12%), and body- and mixed-selective 
units present in similar proportions (max ~2%; Fig. 1b). 
Selectivity of these units was quantified using d′ based 
on the fLOC dataset and increased across layers (Fig. 
1c). We validated this selectivity using an independent 
dataset containing faces, bodies, and objects (100 
images each). Units retained their selectivity (Fig. 1d) 
but were distributed along a continuum of face-body 
selectivity (Fig. 1e), despite their initial discrete 
clustering, suggesting a graded rather than strictly 
categorical representational space. 

Next, we examined the functional role of selective 
units in domain-specific processing by training linear 
classifiers (SVMs) to decode face identities and body 
parts from their activations. To ensure a fair 
comparison, we selected the same minimum number 
of top-ranked units per type in each layer. For face 
identity decoding, we used a dataset of 100 identities 
(10 images each; Dobs et al., 2023) with leave-one- 
exemplar-out cross-validation. Notably, face- and 
mixed-selective units outperformed body- and 
non-selective units in intermediate to late layers (Fig. 
1f). For body part decoding, we used 6 categories from 
the THINGS database (e.g., arm, leg; 12-16 images 
each; Hebart et al., 2019) with stratified 5-fold 
cross-validation. Similarly, body- and mixed-selective 
units outperformed face- and non-selective units in 
intermediate layers (Fig. 1g). These findings suggest 
that mixed-selective units encode both face- and 
body-specific information, highlighting their potential 
role in integrating faces and bodies. 



 

 
Figure 1: a, DNN fLOC approach. b, Proportion and c, selectivity (d’) of unit types across layers based on fLOC 
dataset. d, Layer-aggregated face and body selectivity of unit types, and e, individual unit selectivity in fc6 based 
on validation dataset. f, Face identity and g, body part decoding accuracy across layers. Shaded areas: 95% CIs. 
 
Finally, we tested the correspondence between 
selective units and cortical areas using encoding 
models applied to fMRI responses from the Natural 
Scenes Dataset (Allen et al., 2022). We analyzed data 
from all participants (N=8), focusing on person- 
containing images (n~5000 per participant). Using the 
same fLOC (t>2; SNR>.15), we defined face- and 
body-selective areas (OFA, FFA, aTL-faces, EBA, 
FBA, mTL-bodies) and an overlapping area 
(FFA&FBA; Fig. 2a). To improve the interpretability of 
unit-to-voxel mappings, we predicted each voxel using 
sparse positive encoding via Lasso regression (α=.05, 
positivity constraint; Prince et al., 2024). This way, 
each voxel is explained by a purely additive 
combination of the most selective subset of units per 
type. A combined model with controlled unit counts per 
type was fit, and semi-partial correlation analysis 
isolated each type’s unique contribution. Face- and 
body- selective units explained the most additional 
variance in their respective areas (Fig. 2b), confirming 
alignment with neural selectivity. Notably, 
mixed-selective units contributed comparably to both 
areas, suggesting shared coding mechanisms. 
 

 

Figure 2: a, Schematic face- and body-selective areas. 
b, Semi-partial correlation of selective units in fc6 and 
voxels per area, averaged across participants. Error 
bars: 95% CIs. 

Discussion 
Our findings demonstrate that a DNN trained on object 
recognition develops distinct populations of face- and 
body-selective units, as well as mixed-selective units 
that respond to both. Unlike prior neuroimaging 
studies, where functional overlap may reflect lenient 
contrasts, our rigorous analyses reveal persistent 
entanglement. This pattern also generalized across 
architectures, training diets, and learning regimes (not 
displayed here). Mixed-selective units emerge early 
and become more prominent across processing 
stages, challenging notions of fully segregated or 
late-integrated pathways (Hu et al., 2020). Instead, 
they support progressively integrated networks (Harry 
et al., 2016) or a single multiplexed system with a 
face-body continuum (Tarhan & Konkle, 2020). 
Although mixed-selective units encode both face and 
body information and emerge in a task-optimized DNN 
in a way that suggests functional relevance, their 
precise role remains unclear. This motivates ongoing 
work exploring whether mixed-selective represen- 
tations are essential for integrating face and body 
features into cohesive whole-person representations 
(Brandman & Yovel, 2016; Kaiser et al., 2014). In sum, 
our results reveal that DNNs exhibit both distinct and 
shared selectivity for faces and bodies, informing 
integration patterns in human visual cortex. 



 

Acknowledgments 
L.E.v.D was supported by a doctoral scholarship 
awarded by the German Academic Scholarship 
Foundation. K.D. was supported by the ERC Starting 
Grant DEEPFUNC (ERC-2023-STG-101117441), the 
Hessian Ministry of Higher Education, Research, 
Science and the Arts (LOEWE Start Professorship and 
Excellence Program “The Adaptive Mind”), and the 
Deutsche Forschungsgemeinschaft (DFG, German 
Research Foundation, 222641018-SFB/TRR 135 TP 
C9). 

References 

Allen, E. J., St-Yves, G., Wu, Y., Breedlove, J. L., 
Prince, J. S., Dowdle, L. T., Nau, M., Caron, B., 
Pestilli, F., Charest, I., Hutchinson, J. B., Naselaris, 
T., & Kay, K. (2022). A massive 7T fMRI dataset to 
bridge cognitive neuroscience and artificial 
intelligence. Nature Neuroscience, 25(1). 
https://doi.org/10.1038/s41593-021-00962-x 

Brandman, T., & Yovel, G. (2016). Bodies are 
Represented as Wholes Rather Than Their Sum of 
Parts in the Occipital-Temporal Cortex. Cerebral 
Cortex, 26(2), 530–543. 
https://doi.org/10.1093/cercor/bhu205 

Dobs, K., Yuan, J., Martinez, J., & Kanwisher, N. 
(2023). Behavioral signatures of face perception 
emerge in deep neural networks optimized for face 
recognition. Proceedings of the National Academy of 
Sciences, 120(32), e2220642120. 
https://doi.org/10.1073/pnas.2220642120 

Freiwald, W., Duchaine, B., & Yovel, G. (2016). Face 
Processing Systems: From Neurons to Real-World 
Social Perception. Annual Review of Neuroscience, 
39, 325–346. 
https://doi.org/10.1146/annurev-neuro-070815-0139
34 

Harry, B. B., Umla-Runge, K., Lawrence, A. D., 
Graham, K. S., & Downing, P. E. (2016). Evidence 
for Integrated Visual Face and Body 
Representations in the Anterior Temporal Lobes. 
Journal of Cognitive Neuroscience, 28(8), 
1178–1193. https://doi.org/10.1162/jocn_a_00966 

Hebart, M. N., Dickter, A. H., Kidder, A., Kwok, W. Y., 
Corriveau, A., Van Wicklin, C., & Baker, C. I. (2019). 
THINGS: A database of 1,854 object concepts and 
more than 26,000 naturalistic object images. PLOS 
ONE, 14(10). 
https://doi.org/10.1371/journal.pone.0223792 

Hu, Y., Baragchizadeh, A., & O’Toole, A. J. (2020). 
Integrating faces and bodies: Psychological and 
neural perspectives on whole person perception. 
Neuroscience & Biobehavioral Reviews, 112, 

472–486. 
https://doi.org/10.1016/j.neubiorev.2020.02.021 

Kaiser, D., Strnad, L., Seidl, K. N., Kastner, S., & 
Peelen, M. V. (2014). Whole person-evoked fMRI 
activity patterns in human fusiform gyrus are 
accurately modeled by a linear combination of face- 
and body-evoked activity patterns. Journal of 
Neurophysiology, 111(1), 82–90. 
https://doi.org/10.1152/jn.00371.2013 

Kanwisher, N., Khosla, M., & Dobs, K. (2023). Using 
artificial neural networks to ask ‘why’ questions of 
minds and brains. Trends in Neurosciences, 46(3), 
240-254. https://doi.org/10.1016/j.tins.2022.12.008 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). 
Imagenet classification with deep convolutional 
neural networks. Advances in Neural Information 
Processing Systems, 25, 1097–1105. 
https://doi.org/10.1145/3065386 

Mehrer, J., Spoerer, C. J., Jones, E. C., Kriegeskorte, 
N., & Kietzmann, T. C. (2021). An ecologically 
motivated image dataset for deep learning yields 
better models of human vision. Proceedings of the 
National Academy of Sciences, 118(8). 
https://doi.org/10.1073/pnas.2011417118 

Peelen, M. V., & Downing, P. E. (2007). The neural 
basis of visual body perception. Nature Reviews 
Neuroscience, 8(8), 636–648. 
https://doi.org/10.1038/nrn2195 

Prince, J. S., Alvarez, G. A., & Konkle, T. (2024). 
Contrastive learning explains the emergence and 
function of visual category-selective regions. 
Science Advances, 10(39), eadl1776. 
https://doi.org/10.1126/sciadv.adl1776 

Schwarzlose, R. F., Baker, C. I., & Kanwisher, N. 
(2005). Separate face and body selectivity on the 
fusiform gyrus. The Journal of Neuroscience, 25(47), 
11055–11059. 
https://doi.org/10.1523/JNEUROSCI.2621-05.2005 

Tarhan, L., & Konkle, T. (2020). Sociality and 
interaction envelope organize visual action 
representations. Nature Communications, 11(1), 
3002. https://doi.org/10.1038/s41467-020-16846-w 

Taubert, J., Ritchie, J. B., Ungerleider, L. G., & Baker, 
C. I. (2022). One object, two networks? Assessing 
the relationship between the face and body-selective 
regions in the primate visual system. Brain Structure 
and Function, 227(4), 1423–1438. 
https://doi.org/10.1007/s00429-021-02420-7 

https://doi.org/10.1038/s41593-021-00962-x
https://doi.org/10.1093/cercor/bhu205
https://doi.org/10.1073/pnas.2220642120
https://doi.org/10.1146/annurev-neuro-070815-013934
https://doi.org/10.1146/annurev-neuro-070815-013934
https://doi.org/10.1162/jocn_a_00966
https://doi.org/10.1371/journal.pone.0223792
https://doi.org/10.1016/j.neubiorev.2020.02.021
https://doi.org/10.1152/jn.00371.2013
https://doi.org/10.1016/j.tins.2022.12.008
https://doi.org/10.1145/3065386
https://doi.org/10.1073/pnas.2011417118
https://doi.org/10.1038/nrn2195
https://doi.org/10.1126/sciadv.adl1776
https://doi.org/10.1523/JNEUROSCI.2621-05.2005
https://doi.org/10.1038/s41467-020-16846-w
https://doi.org/10.1007/s00429-021-02420-7

	Deep Neural Networks Provide Insights into Distinct and Shared Selectivity for Faces and Bodies in Human Visual Cortex 
	 
	Abstract 
	Introduction 
	Results 
	Acknowledgments 
	References 

