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Abstract 

Computational cognitive models provide an 

approach to understanding behavior and 

cognition by formalizing latent parameters 

underlying decision-making and learning. Many 

existing models take a univariate approach, 

analyzing single measures in isolation, while 

others incorporate multiple measures but impose 

specific process assumptions that constrain how 

these measures relate i.e. drift diffusion models. 

Here, we introduce a hierarchical multivariate 

modeling framework that uses copulas to flexibly 

combine independent likelihood functions, 

enabling joint modeling of multiple measures 

without imposing restrictive assumptions. 

Through simulations and empirical applications, 

we assess the reliability, discriminability, and 

advantages of copula-based modeling (CBM). 

Model validation via simulation-based calibration, 

model recovery, and sensitivity analyses 

demonstrate that CBM is computationally robust 

and accurately recovers latent parameters and 

their uncertainty. When applied to 

psychophysical and probabilistic learning tasks, 

CBM can be empirically distinguished from 

DDMs, even with limited data. We show that this 

framework enables efficient use of available data 

by integrating multiple sources of information, 

while enhancing model accuracy and efficiency of 

parameter estimation. 
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Introduction 

Cognition spans a wide spectrum of interacting 

processes, many of which remain only partially 

understood. The challenge of unraveling these 

processes lies both in their quantification but also in 

developing models that accommodate the richness of 

cognitive phenomena. Traditional approaches often 

rely on univariate analyses that isolate individual 

measures, such as choices, response times or 

physiological signals. This approach risks discarding 

meaningful dependencies between variables and 

overlooking the interactions that could shape 

behavior and cognition. 

Computational cognitive models offer a principled 

framework for inference about cognitive processes by 

formalizing latent parameters that govern decision-

making. A particularly influential class of such 

models, Drift Diffusion Models (DDM), posits that 

decision-making arises from an evidence 

accumulation process, in which noisy information 

accrues over time until a decision threshold is 

reached (Ratcliff, 1978). The DDM’s ability to jointly 

model binary choices and response times has made 

it a cornerstone of cognitive modeling. However, its 

reliance on an accumulation-to-bound mechanism 

imposes a specific process assumption that may not 

be suitable for all cognitive tasks. We introduce 

Copula Based Modelling (CBM), a hierarchical 

multivariate modeling framework that uses copulas to 

flexibly model dependencies between multiple 

measures. Our framework decouples marginal 

distributions from dependency structures with the use 

of copulas, which means that CBM enables joint 

modeling of multiple measures without restrictive 

assumptions about their relationships. This flexibility 

makes CBM applicable to a broad range of scientific 

questions. 

Methods 

CBM builds on three steps: (1) each outcome (e.g., 

choice, RT) is modeled using a domain-specific 

likelihood function; (2) experimentally manipulated 

variables or predictors in general are mapped to the 

outcomes through latent parameters; (3) 

dependencies among outcomes are modeled via a 

copula, which captures correlation beyond shared  

predictors. We built two CBMs based on the 

assumption that response times and response 

probabilities are linked by entropy. 

We here focus on binary choices and response 

times, to enable comparison with the DDM. We 

evaluated our CBMs using simulations and ensured 

they were distinguishable from the DDM and fit both 

types of models into two public datasets: an 

orientation detection task (Bang et al., 2019) and a 

probabilistic reward-learning task (Hess et al., 2024). 

For comparison, we fit DDMs with matched priors and 

inference settings. Models were implemented in Stan, 

and comparisons used leave-one-out cross-

validation (LOO-CV).  

Our two formulated CBM models had binary choices 

following a Bernoulli likelihood and response times a 

shifted log-normal likelihood with an additional non-

decision parameter. The expectation (𝐸𝑡) governing 

the random variable of the Bernoulli distribution was 

determined by a psychometric function or a Rescorla 

Wagner learning model. Mean response time was 

then assumed to be generated from an affine function 

of the entropy of this expectation. 



 

𝑅𝑇�̂� = 𝑅𝑇𝑖𝑛𝑡 
+ 𝑅𝑇𝑠𝑙𝑜𝑝𝑒 

⋅ 𝐻(𝐸𝑡) 

where 𝑅𝑇�̂� is the expected response time at trial t, 
𝑅𝑇𝑖𝑛𝑡 reflects the response speed under minimal 

uncertainty, 𝐻(𝐸𝑡) is the degree of uncertainty in an 

expectation and 𝑅𝑇𝑠𝑙𝑜𝑝𝑒 quantifies the efficiency with 

which subjects resolve uncertainty during decision-

making, measured in seconds per bit. To model the 

dependency between the binary choices (𝐵𝑡) and 

response times (𝑅𝑇𝑡) above their mutual dependence 

of the expectation (𝐸𝑡) induced by the experimentally 

manipulated variables 𝑋𝑡 (stimulus strength and 

reward), we apply the probability integral transform to 

then transform these into a multivariate normal (MVN) 

distribution using is the normal quantile function 

Φ−1(. ). 

[
𝛷−1(𝐹1(𝐵𝑡 | 𝑋𝑡))

𝛷−1(𝐹2(𝑅𝑇𝑡 | 𝑋𝑡))
] ∼ 𝑀𝑉𝑁 ([

0
0

] , [
1 𝜌
𝜌 1

]) 

Where 𝐹1 and 𝐹2 are the cumulative distribution 

functions of each measure, and 𝜌 represents the 

correlation between binary choices and response 

times, beyond what is explained by 𝑋𝑡. 

The correlation parameter 𝜌 captures linear 

dependence on the transformed marginal space. This 

parameter quantifies residual associations between 

response times and choices beyond their marginal  

 

distributions. Positive values indicating that longer 

RTs are associated with higher likelihood of choosing 

“1”. Additionally, the copula’s negative entropy 

provides a lower bound on mutual information, 

serving as a diagnostic for dependencies that are not 

captured by the assumed relationship and specified 

marginals. 

Results 

CBM demonstrated reliable simulation-based 

calibration and parameter recovery on the group  

mean parameters. Indicating good parameter 

estimation and well calibrated credibility intervals. 

Model recovery analyses showed that the CBM was 

distinguishable from DDMs in over 99% of cases. 

Indicating that if one of the two models generated the 

data then we can be quite confident that we can pick 

up that difference. This model comparison also 

entailed a reduced model with only binary choices to 

show that the inclusion of response times led to a 

reduced uncertainty in parameter estimates across 

tasks confirming that RTs provide complementary 

information, both in reducing uncertainty in parameter 

estimates. Lastly, we fit the DDM and the CPM to two 

public datasets (Figure 1). Here we found that CBM 

provided better fit than the DDM when considering 

both choices and RTs (elpd difference: 

psychophysics = -153 ± 17; learning = -554 ± 48). 

Figure 1. Posterior predictive checks for experimental data from a psychometric paradigm (left) and a learning paradigm (right). 
Group-averaged data (black dots with 95% confidence interval). The top row depicts the probability of a response, while the 
bottom row presents response times. Marginal posterior predictive means and medians are shown for both the drift diffusion 
model (DDM) (red) and the multivariate hierarchical copula-based framework (CBM) (blue). Orange and light blue lines represent 
posterior predictive draws for DDM and CBM. 

 

 

 



References 

Bang, J. W., Shekhar, M., & Rahnev, D. (2019). 

Sensory noise increases metacognitive efficiency. 

Journal of Experimental Psychology: General, 

148(3), 437–452. 

https://doi.org/10.1037/xge0000511 

 

Hess, A. J., Iglesias, S., Köchli, L., Marino, S., Müller-

Schrader, M., Rigoux, L., Mathys, C., Harrison, O. 

K., Heinzle, J., Frässle, S., & Stephan, K. E. (2024). 

Bayesian Workflow for Generative Modeling in 

Computational Psychiatry (p. 2024.02.19.581001). 

bioRxiv. 

https://doi.org/10.1101/2024.02.19.581001 

 

Ratcliff, R. (1978). A theory of memory retrieval. 

Psychological Review, 85(2), 59–108. 

https://doi.org/10.1037/0033-295X.85.2.59 

 

https://doi.org/10.1037/xge0000511
https://doi.org/10.1101/2024.02.19.581001
https://doi.org/10.1037/0033-295X.85.2.59

