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Abstract

The rise of large-scale neuroscience datasets has driven
widespread adoption of deep neural networks (DNNs) as
models of biological neural systems. While DNNs can ap-
proximate functions directly from data circumventing the
need for mechanistic modeling, they risk producing im-
plausible and difficult-to-interpret models. In this paper,
we argue for universal differential equations (UDEs) as
a unifying approach for model development and valida-
tion in neuroscience. UDEs view differential equations
as parameterizable, differentiable mathematical objects
that can be augmented and trained with scalable deep
learning techniques. This synergy facilitates the integra-
tion of classical mathematical modeling with emerging
advancements in Al into a potent framework. We provide
a primer on this burgeoning topic in scientific machine
learning and describe a generative modeling recipe for
fitting UDEs on neural and behavioral data. Our goal is to
show how UDEs can fill in a critical gap between mecha-
nistic, phenomenological, and data-driven models in neu-
roscience and highlight their potential to address inher-
ent challenges across diverse applications such as un-
derstanding neural computation, controlling neural sys-
tems, neural decoding, and normative modeling.

Keywords: Differentiable modeling; Universal differential
equations; Neural computation; Dynamical systems

Introduction

As holds for all the natural sciences, modern neuroscience is
a scientific discipline whose advancement is fueled by both
theoretical and experimental research. From a theoretical
standpoint, we have witnessed important developments, rang-
ing from detailed mechanistic models of specific neural cir-
cuits (S. S. Kim, Rouault, Druckmann, & Jayaraman, 2017;
Izhikevich & Edelman, 2008; Felleman & Van Essen, 1991;
Bliss & Collingridge, 1993) to grand unified theories of brain
function (Van Gelder, 1998; Friston, 2009; Hawkins, 2021;
Miller & Cohen, 2001). At the same time, from an experi-
mental standpoint, advances in neurotechnolgy are allowing
us to measure (Steinmetz et al., 2021; Urai, Doiron, Leifer,
& Churchland, 2022; Machado, Kauvar, & Deisseroth, 2022)

and manipulate (Deisseroth, 2015; Lozano et al., 2019) the
activity of multiple neurons at an unprecedented scale.

A critical question is how to effectively integrate theoretical
and empirical insights to expand our grasp of neural mecha-
nisms and advance practical applications. In this perspective
paper, we argue for universal differential equations (UDEs)
as a unifying approach for neuroscience (Rackauckas et al.,
2020). UDEs embrace the dynamical systems perspective on
neuroscience, where neural systems are viewed as dynami-
cal systems whose flow (dynamics) can be described in terms
of systems of differential equations (DEs) (Izhikevich, 2007;
Favela, 2021; Durstewitz, Koppe, & Thurm, 2023). Unlike con-
ventional DEs, UDEs can be (partly or fully) estimated from
data by marrying dynamical systems theory with machine
learning. This formulation allows the integration of a-priori
knowledge about the system along with high-capacity func-
tion approximators to model complex systems in the absence
of large-scale datasets. Consequently, UDEs are rapidly gar-
nering attention across scientific domains where the datasets
are still relatively scarce, and mechanistic, theory-driven mod-
els are prevalent, yet fall short in accounting for data vari-
ance (Rackauckas et al., 2020; AlQuraishi & Sorger, 2021;
Lai, Mylonas, Nagarajaiah, & Chatzi, 2021; Karniadakis et al.,
2021). Similarly in neuroscience, differential equations are
ubiquitous, underpinning the majority of theoretical, biophys-
ical, and phenomenological models (Izhikevich, 2007). And
despite their advances, existing measurements tools only pro-
vide sparse and noisy representation of the underlying neural
mechanisms, which require both appropriate numerical tools
and expert knowledge to guide modeling. In our view, UDEs
provide a unique opportunity to bridge different modeling tech-
niques, spanning various biological and abstraction scales in
a unified framework to propel both fundamental and applied
neuroscience.

To motivate UDEs, we begin with a critique on the current
landscape of data-driven dynamical systems in neuroscience,
highlighting key applications, and challenges, culminating in
the motivation for hybrid approaches. Next, we delve into the
taxonomy of UDEs in the context of stochastic dynamical sys-
tems and show how these mathematical objects provide a
spectrum of modeling techniques familiar to the neuroscien-
tist spanning from traditional mechanistic white-box models to



sophisticated black-box deep learning models. We provide a
general recipe for domain-informed training of UDEs for neural
system identification and examine the benefits of UDE-based
models in emerging applications within the field. We conclude
by discussing current challenges and potential future direc-
tions. Through this discourse, we argue that UDEs, when aug-
mented with modern machine learning techniques, can serve
as the foundational building block for multi-scale modeling in
neuroscience, establishing a common language for theory for-
mation and model development.

Dynamical Systems in Neuroscience
From Mechanistic to Data-Driven Models

A prevalent perspective in neuroscience is viewing the brain
as a dynamical system, availing the comprehensive toolbox
of dynamical systems theory (DST) to the field (Van Gelder,
1998; Izhikevich, 2007; Deco, Jirsa, Robinson, Breakspear,
& Friston, 2008; Breakspear, 2017; Favela, 2021). DST en-
ables the formalization of mechanistic models as systems
of differential equations (Hodgkin & Huxley, 1952; FitzHugh,
1961; Izhikevich, 2003) and provides intuitive geometrical and
topological representations of neural systems (Deco & Jirsa,
2012; Khona & Fiete, 2022). This framework also facili-
tates the adoption of phenomenological models from statisti-
cal physics (Wilson & Cowan, 1972; Kuramoto, 1975; Buzsaki
& Draguhn, 2004). However, both approaches have limita-
tions: mechanistic models are laborious to develop and often
lack detail, while phenomenological models provide only ab-
stract descriptions of neural processes (Ramezanian-Panahi
et al., 2022).

The availability of large-scale datasets has spurred the ex-
ploration of data-driven dynamical systems (Landhuis, 2017).
These methods minimize a-priori assumptions, instead lever-
aging rich data to guide model identification (S. L. Brunton &
Kutz, 2019). This approach is particularly valuable in neuro-
science (B. W. Brunton & Beyeler, 2019), where systems are
complex, theoretical frameworks are nascent, and measure-
ment tools provide incomplete mechanistic insights. Conse-
quently, data-driven systems, particularly deep recurrent neu-
ral networks (RNNs), are increasingly adopted across neuro-
science: from probing cognitive functions (Durstewitz et al.,
2023; Vyas, Golub, Sussillo, & Shenoy, 2020), to develop-
ing neurostimulation profiles (Tang & Bassett, 2018; Acharya,
Ruf, & Nozari, 2022), neural decoding (Willett et al., 2023;
Metzger et al., 2023), and clinical applications (Bystritsky,
Nierenberg, Feusner, & Rabinovich, 2012; Roberts, Friston,
& Breakspear, 2017)

Challenges of Data-Driven Methods

The shift towards data-driven methodologies in neuroscience
introduces significant technical challenges. These range
from data-centric challenges such as high dimensionality,
partial observability, non-linearity, process and measurement
noise, non-stationarity, and data scarcity, to modeling hur-
dles such as uncertainty quantification, non-identifiability, and

interpretability issues (Durstewitz et al., 2023). This land-
scape has resulted in a plethora of specialized technical ad-
vancements driven by distinct theoretical and practical frame-
works (B. W. Brunton & Beyeler, 2019; Hurwitz, Kudryashova,
Onken, & Hennig, 2021; Ramezanian-Panahi et al., 2022).
A symptom of this status quo is the prevalent dichotomy be-
tween model expressivity and interpretability. As researchers
opt for more expressive models to capture the intricacies of
neural dynamics, they encounter interpretability challenges.
This is further exacerbated by optimization challenges that
arise either due to the models (e.g. exploding/vanishing gra-
dients in RNNs) or the behavior of the system (e.g. chaos
and non-stationarity), entailing highly technical solutions that
further fragments neuroscientific practice.

Additionally, while the allure of utilizing unbiased expressive
models is initially appealing, in the absence of large-scale cu-
rated datasets, eschewing prior knowledge often results in ill-
posed problems and implausible solutions as highlighted in re-
cent studies (Kao, 2019; Alber et al., 2019; Genkin, Hughes,
& Engel, 2021; Genkin, Shenoy, Chandrasekaran, & Engel,
2023). In practical terms, this means that the models be-
come prone to overfitting on spurious correlations and ex-
hibit high sensitivity to design choices that are peripheral to
the main task at hand, ultimately leading to issues in gen-
eralization and replication across datasets, tasks, and sub-
jects (Maheswaranathan, Williams, Golub, Ganguli, & Sus-
sillo, 2019; Schaeffer, Khona, & Fiete, 2022; Hurwitz et al.,
2021; Han, Poggio, & Cheung, 2023).

New Frontiers

Neural differential equations (NDEs) (Chen, Rubanova, Bet-
tencourt, & Duvenaud, 2018; Kidger, 2022) have emerged as
a powerful tool of choice to implement data-driven dynamical
systems. NDEs represent an emerging family of continuous
models that utilize neural networks to parameterize the vec-
tor fields of differential equations. This integration marries the
expressive power of neural networks with the rigorous theo-
retical foundations established by decades of research in dif-
ferential equations and dynamical systems theory. While orig-
inally popularized as deep neural network models with con-
tinuous depth (Chen et al., 2018), recent advancements have
burgeoned into a rich spectrum of continuous-time architec-
tures rooted in dynamical systems theory (Tzen & Raginsky,
2019a; Morrill, Salvi, Kidger, & Foster, 2021; Z. Li et al., 2020;
Jia & Benson, 2019; Poli et al., 2019; Kidger, Morrill, Foster, &
Lyons, 2020). Recently, NDEs are being increasingly adopted
in computational and systems neuroscience (T. D. Kim, Luo,
Pillow, & Brody, 2021; Sedler, Versteeg, & Pandarinath, 2022;
Geenjaar et al., 2023; Versteeg, Sedler, McCart, & Pandari-
nath, 2023). While this is promising, their current application
have only focused on black-box, explicitly discretized versions
that do not capture the broader potential of NDEs as a path-
way towards a unified scientific modeling language (Shen et
al., 2023; AlQuraishi & Sorger, 2021; Wang et al., 2023). This
untapped potential can be realized by conceptualizing differ-
ential equations as parameterizable, differentiable mathemat-



ical objects amenable to augmentation and training via scal-
able machine learning techniques. Traditional DEs and NDEs
can thus be viewed as special cases at the extreme ends of a
spectrum.

Universal Differential Equations
Mathematical Formulation

A UDE is a mathematical model that extends a traditional dif-
ferential equation by incorporating free parameters whose val-
ues can be learnt from data. By including free parameters,
a UDE can act as a universal approximator(Cybenko, 1989;
Hornik, Stinchcombe, & White, 1989), meaning that it is able
to approximate any dynamical system. In their most general
form, UDEs are parameterized forced stochastic delay partial
differential equations (Rackauckas et al., 2020). In this paper,
we focus our attention on parameterized forced stochastic dif-
ferential equations (SDEs). SDEs extend ordinary differential
equations by incorporating stochastic processes, enabling the
modeling of dynamical systems subject to uncertainty. The
key to this extension is the inclusion of a stochastic term that
represents random fluctuations arising from either intrinsic or
extrinsic factors. A forced SDE makes explicit how the (multi-
dimensional) state x(¢) of a system of interest changes as a
function of control inputs u(r) and (Brownian) process noise
W (r) with 7 the time index. This can be succinctly represented
as

dx(r) = po(x(t),u(r))dr + oo (x(2), u(t))dW (1), (1)

where u and ¢ are drift and diffusion functions, representing
the deterministic and stochastic parts of the time evolution of
the system. Both u and ¢ are parameterized by 6, which are
the (learnable) free parameters of the system. We often drop
the time index from our notation and write (1) more compactly
as dx = ug(x, u)dt + cg(x,u)dW.

SDEs offer considerable flexibility for modeling dynamical
systems. This adaptability stems from the diffusion term’s
configuration and Brownian motion properties (Oksendal,
2013; Sarkka & Solin, 2019). For instance, in cases where ¢
is a constant matrix or a state-independent function, the noise
becomes additive, rendering it suitable for modeling extrin-
sic uncertainties such as external, unobserved interactions.
Conversely, when ¢ is a function of the system’s state, the
noise becomes multiplicative, which varies with the system’s
state, capturing intrinsic uncertainties, such as uncertainties
in drift term parameters. These nuances provide a compre-
hensive framework for modeling complex dynamical systems
with varying types of uncertainty. It is at the modeler’s dis-
cretion to define the functional form of u and ¢. Ultimately,
this functional form should accurately capture the (uncertain)
evolution of the state of the system. This is evaluated by com-
puting the solution to Eq. 1, which is a distribution over paths
x() within some range ¢ € [0, T]. When this functional form is
unknown, a feed-forward neural network becomes a conven-
tional choice.

Fitting a UDE to Data

The key idea behind efficient and scalable training of UDEs
is the incorporation of a numerical solver within a differen-
tiable computational graph (Fig. 1a). This setup enables gra-
dient back-propagation through the solution of the differential
equation, enabling fitting the UDE parameters to observed
data given a suitable cost function. There are two primary
strategies for this purpose: i) discretize-then-optimize, which
involves storing and gradient-backpropgation through all in-
termediate steps of the solver, providing exact gradients and
i) optimize-then-discretize, utilizing the adjoint-method (Chen
et al., 2018) to approximate gradients at fixed memory cost.
Effectively, this setup enables the training of a UDE-based
model using standard loss functions similar to those used
in discrete deep learning models. Nonetheless, given the
stochastic nature of a UDE of the form in Eqg. 1, UDEs are
typically trained as generative models with generative model-
ing objectives such as the evidence lower bound (X. Li, Wong,
Chen, & Duvenaud, 2020; Course & Nair, 2023a), adversar-
ial loss (Kidger, Foster, Li, & Lyons, 2021), or, very recently,
matching objectives (Bartosh, Vetrov, & Naesseth, 2025).

A Continuum of Models

The UDE formulation naturally encompasses a spectrum of
modeling approaches from traditional white-box mechanistic
models to contemporary expressive black-box deep learning
models (Fig. 1b). Several modeling scenarios can thus be
phrased as a UDE training problem. Here we provide some
examples of these scenarios, where we use a subscript 6 to
indicate free parameters.

Differential Equations with Known Unknowns When the
structure of the system is known but some parameters are un-
known, training a UDE amounts to estimating these parame-
ters from data, balancing interpretability and adaptability while
reducing search space (Linial, Ravid, Eytan, & Shalit, 2021;
Djeumou, Neary, & Topcu, 2023; Abrevaya et al., 2023).

For instance, the Ornstein-Uhlenbeck (OU) process models
a neuron’s membrane potential (Laing & Lord, 2009): (Laing
& Lord, 2009):

dx =a(m—x)dt +bdW , 2

where x denotes the membrane potential and 6 = (a,m,b) are
the free parameters. Here the OU process provides the struc-
ture of the model dynamics, while the values of the parameters
0 are estimated by fitting the UDE on empirical observations.

Differential Equations with Learnable Uncertainty In this
setup, the structure of the deterministic dynamics is known or
assumed, with unknown parameters, and a function approxi-
mator is used to capture intrinsic and/or extrinsic uncertainty
about the model.

For example, consider the modern interpretation of a
Wilson-Cowan model (Wilson & Cowan, 1972), used to
describe the the average firing rates of a group of neu-
rons (Sussillo, 2014). This model can be phrased as a UDE
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Figure 1: Universal Differential Equations. a) A schematic illustration of a universal differential equation. The vector field of
the differential equation is defined via either an existing model from the literature, or a differentiable universal approximator (e.g.
a neural network) or a combination of both. The numerical solver is an SDE-compatible solver, which takes in the initial condition
X0, @ Wiener process generator W, the forcing signal u, the functions defining the vector fields of the SDE u and &, along with
their parameters 0. The solver computes the solution at time ¢. The parameters of the differential equation can then be trained
either via automatic differentiation or the adjoint method. This setup enables the use of a UDE either as universal function
approximator on their own or as a part in a differentiable computational graph. b) The formulation of a UDE encompasses a
spectrum of modeling techniques from white-box traditional models to data-driven black box models. This flexibility can foster
interoperability between different methodological efforts, and offer a principled approach to balance between data adaptability
and scientific rationale in model development.

to capture stochastic dynamics not captured by the original
model as follows:

Differential Equations with Residuals This approach aug-
ments a traditional model by learning unknown components
via a function approximator. For instance, the Kuramoto
model (Kuramoto, 1975), widely used to study neural synchro-
nization, assumes homogeneous oscillators. A UDE formula-
tion can account for heterogeneity via:

dx = %(—)H-Jr(x)+Bu)dt+6[5(x,u)dW, 3)

where x represents the neurons’ synaptic currents and 6 =
(t,J,B,B) are the free parameters. The function G is a dif-
ferentiable function approximator (a neural network) that cap-
tures both how the dynamics respond to external unobserved
inputs (extrinsic uncertainty) and how the dynamics evolve
subject to uncertainty about the model parameters (intrinsic
uncertainty). Hence, 0 denotes the parameters of the tradi-

N
dx = <m+§ sin(xjx)+fu(x)> dr+Xdw, (4)
j=1

where fu(x) is a trainable function that corrects model dis-
crepancies.

Neural Differential Equations At the extreme end of the

tional model and the function approximator. These param-
eters are jointly learned by fitting the UDE on observations.
This setup allows leveraging interpretable mechanistic deter-
ministic models while embracing the complex stochastic na-
ture that arise empirically when modeling complex systems
from partial or noisy observations.

spectrum, both the structure and parameters of the system
are unknown, and UDEs fully rely on neural networks to learn
the governing equations (Kidger, 2022; Tzen & Raginsky,
2019b, 2019a; X. Li et al., 2020):

dx = pie.(x,u)dt + o (x,u)dW , (5)



where u and ¢ are neural networks with parameters 6 =
(a,B). This equation can be viewed as a stochastic,
continuous-time generalization of discrete-time deep recur-
rent neural networks prevalent in contemporary machine
learning research (Kidger, 2022; Tzen & Raginsky, 2019b,
2019a; X. Li et al., 2020).

Towards Informed Stochastic Models

The presented UDE configurations fill a spectrum between
white-box and black-box models under a unified formula-
tion. Intuitively, as one progresses from white-box models
towards black-box models, the reliance on empirical data for
model identification increases correspondingly, inversely pro-
portional to the number of presupposed assumptions about
the underlying dynamics (the more correct the model, the less
data needed, and vice versa). In practice, it should be ex-
pected that a certain degree of knowledge or hypothesis about
the studied system is available. This knowledge should not be
constrained to the structure of the dynamics, but could cover
all aspects of the computational model (e.g., dimensionality,
information about the stimulus or observation modality, scale
of noise, expected dynamics, etc.). UDEs simply serve as
a universal tool for evaluating this knowledge, or augmenting
them to develop scalable models that can be used in down-
stream applications.

Crucially, UDEs conceptualize neural processes as
continuous-time stochastic processes. This perspective can
bring computational models closer to the complex nature of
neural processes. This is imperative when modeling neural
dynamics, where stochasticity can be traced from the molecu-
lar level, with stochastic behaviors in ion channels and synap-
tic transmission (Hille, 1978; Sakmann, 2013), to the cellu-
lar scale where neurons demonstrate unpredictable firing pat-
terns (Tuckwell, 1988). Importantly, stochasticity is not con-
fined to the micro-scale as it escalates to the level of neural
populations, where the effects of noise and randomness are
not merely incidental but play a crucial role in the function-
ing and organization of neural systems (Rolls & Deco, 2010;
Faisal, Selen, & Wolpert, 2008). The following section delves
into leveraging UDEs to develop differentiable, informed, prob-
abilistic models for neural system identification.

Neural System Identification

Consider a neural system whose state evolves as a
continuous-time stochastic process {x(t): 0 <t < T} that
is potentially modulated by exogenous input u(t). In prac-
tice, we do not observe x or u directly. Instead, we record
discrete-time stimuli v, = v(#,,) and neural or behavioral out-
puts y, = y(t,,) attimepoints ¢1, ...,y with 0 <1, < T. We use
v1.y and y.y to denote these observations across timepoints.
Let T = (v1,y1,...,vN,yn) denote a trajectory of stimuli and
responses and assume that we have access to a dataset
D = {1!,... 7%} consisting of k such trajectories. The over-
arching goal of neural system identification is to estimate the
latent neural states x() from the data D.

We propose to model the underlying stochastic process x
as the solution of a latent UDE, and frame the problem of sys-
tem identification as a posterior inference problem of the distri-
bution p(x|y,v), which we tackle via variational inference. Ac-
curate resolution of this problem yields multiple benefits. First,
it allows inference of the latent states of the system. Second, it
allows reconstructing and predicting the system’s behavior un-
der various conditions. Third, it provides an expressive proba-
bilistic modeling framework that quantifies uncertainty and in-
corporates prior knowledge, facilitating robust hypothesis gen-
eration and testing. Recent advances in variational inference
for stochastic differential equations (SDEs) (X. Li et al., 2020;
Tzen & Raginsky, 2019a, 2019b; Ryder, Golightly, McGough,
& Prangle, 2018; Course & Nair, 2023b) make this formulation
tractable and appealing for complex neural data, particularly in
naturalistic settings. Below, we outline a flexible architecture
for building such models along with the training objective. A
general overview of the architecture is illustrated in Figure 2.

Model Architecture

Stimulus Encoder When the stimulus v is high-dimensional
(e.g., images, video, text), it is computationally expen-
sive to integrate it directly into a continuous-time dynamics
model. Instead, we map v to a (potentially lower-dimensional)
continuous-time representation u. Formally,

u(t) = mfoe (ve)boe » 6)

where ag: R% — R% is an encoding function (trainable
or pre-trained) and m: R% x [0,7] — R% is an interpola-
tion scheme(e.g., piecewise-constant, spline-based) chosen
to match the temporal resolution requirements. In simpler
cases (low-dimensional v), o may be the identity.

Recognition Model The objective of this module is to ap-
proximate the posterior of the initial condition p(xo|y,c) of the
system. To accomplish this, we define a mapping function that
uses the observed data to infer x.

P(Xo\yac) = C¢ (yc:Ovuc:O) ) (7)

where {is a sequential model with parameters ¢ and ¢ € [0, N]
denotes the end of the observation interval used for estimat-
ing the initial condition. Note that notations y..q, .o indicate
that the intervals are reversed in time. The choice of ¢ should
depend on the nature of the dynamics or context of the appli-
cation. For example, in stationary settings, it might suffice to
have ¢ < N. It is also important to consider, which phenom-
ena is under study. In most cognitive experiments, pre-task
recordings exist and can be utilized for this purpose. In gen-
eral it is important to ensure that { is not overly parameterized
to avoid encoding future information about the dynamics as
recommended by (Massaroli, Poli, Park, Yamashita, & Asama,
2020).

Process Model The goal of this module is to learn the distri-
bution of the latent stochastic process p(x|u). This is done by
employing a UDE to model the temporal evolution of the initial
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Figure 2: Framework for neural system identification a) Shows the forward pass (generative mode) during the encoding of
a (high-dimensional) stimulus v into neurobehavioral observations y. This is done through a fully differentiable graph, which
consists of i) a stimulus encoder to encode the stimulus into a lower dimensional continuous representation, ii) a recognition
model to infer the hidden initial state xy, iii) a latent dynamics model to model the temporal evolution of the dynamics, and iv) an
observation model to map the latent states into observations. b) lllustrates the formulation of the informed stimulus encoder which
is tasked with learning a lower dimensional continuous representation u from the discrete (high-dimensional) stimulus signal v.
c) lllustrates examples of modality-specific observation models to map the latent process into neurobehavioral measurements.

state xg, subject to external control u, and Brownian motion
W. This is expressed as before as

dx = po(x,u)dt + oo (x,u)dW . (8)

The design of the UDE should be dependent on domain
knowledge about the system in question and the downstream
application of the model.

Observation Model Observation models, also known as
measurement or emission models, define the probabilistic re-
lationship between the latent states of a system and the ob-
served data. The observation model is formalized as follows:

pylx) = Ao (x(r), (1)), ©

where Ag: R% — R% is the observation function and &(t)
is observation noise.Biophysical constraints, measurement
noise, and interpretability demands inform the choice of A.
For instance, Poisson or other point-process models may be
used for spike trains (Heeger et al., 2000), nonlinear Gaussian
models for local field potentials (Herreras, 2016), and special-
ized emission models for fMRI to account for hemodynamic
responses (Friston, Mechelli, Turner, & Price, 2000).

Training Objective

To perform variational inference in the context of latent con-
tinuous stochastic processes, we need to define a reasonable
and tractable family of path distributions for the approximate
posterior. Following the approach of (X. Li et al., 2020), we
may employ an SDE to represent this. Specifically, here we



can define our process model that we wish to learnin Eq. 8 as
our prior and the approximate posterior as another black-box
UDE. Note that the term prior here refers to our main gener-
ative UDE, and the approximate posterior is an auxiliary UDE
that is used only during training. This approximate posterior
UDEs can be written as:

dx = py(%,y,u)dr + o (X, u)dW , (10)

where ¢ are the variational parameters. Note that both the
prior and the approximate posterior share the same diffusion
Oy, a decision which guarantees that the Kullback-Leibler (KL)
divergence between the two probability measures they induce
is finite (under some mild conditions) (X. Li et al., 2020).
This KL divergence can be defined using Girsanov’s theo-
rem (Girsanov, 1960) as

T1
Da(ollP)=E: | [3 latmywlPal

where A(%,y,u) = og(%,u) " (up(%,y,u) — ue(%,u)) with P
and Q denoting the measures induced by the prior and ap-
proximate posterior, respectively. Using this we can define
an evidence lower bound (ELBO) on the conditional marginal
likelihood of the observations:

ELBO(6,0;v,y) = Es [log p(y[%)] = Dk (Q|IP)  (12)

Maximizing this ELBO via stochastic gradient methods
jointly updates 0 (generative model) and ¢ (inference model).
This approach provides a powerful and flexible framework for
neural system identification: it marries domain-driven model-
ing choices with scalable data-driven training, enabling mod-
eling latent, nonlinear, and stochastic neural processes.

Opportunities in Neuroscience

Universal Differential Equations (UDEs), trained for neural
system identification, offer a powerful alternative to existing
data-driven models in neuroscience. We highlight four key ap-
plications, emphasizing the advantages of UDE integration.

Explaining Cognition and Behavior

A core challenge in neuroscience is linking brain activity to
cognitive and behavioral functions. Latent variable models
(LVMs) have revealed that these functions arise from coor-
dinated, low-dimensional neural population activity governed
by latent states (Mante, Sussillo, Shenoy, & Newsome, 2013;
Churchland et al., 2012; Elsayed & Cunningham, 2017). How-
ever, LVMs are often limited to simple, stereotyped behaviors
and face challenges in defining input-output structures, inter-
neuronal influences, and incorporating anatomical constraints
(Urai et al., 2022; Hurwitz et al., 2021; Vyas et al., 2020).
UDEs can address these limitations by:

e Structured and Multi-Scale Dynamics: UDEs can be
used to structure the latent space, leveraging the rich his-
tory of differential equations in neuroscience to improve

model expressiveness and interpretability.  Additionally,
UDEs allows building tractable multi-scale models, combin-
ing mechanistic models at one scale (e.g., single-neuron
dynamics) with learned dynamics at another (e.g., inter-
population interactions) (Fig. 3a).

* Dynamical Systems Analysis: Analyzing the trained
UDE’s vector field (fixed points, limit cycles, etc.) can pro-
vide insights into the computational mechanisms underlying
cognition and behavior, similar to analyses of RNN mod-
els (Sussillo & Barak, 2013; Vyas et al., 2020).

* Modeling Complex Noise: UDEs can capture stochastic-
ity arising from unobserved interactions and intrinsic prop-
erties by using a neural network in the diffusion term. This
surpasses common simplified noise models (e.g., additive
Gaussian noise) (Linderman et al., 2017; Laing & Lord,
2009; Pandarinath et al., 2018), which are often inadequate
for higher-order brain functions where noise plays a crucial
role in neural coding and behavior (Rolls & Deco, 2010;
Faisal et al., 2008).

* Model Comparison: UDEs facilitate model comparison by
allowing researchers to configure the prior UDE to reflect
specific theoretical hypotheses about neural processes.
The likelihood of observed data can then be used to evalu-
ate the relative effectiveness of different dynamical mod-
els, providing a more scalable approach than traditional
Bayesian model comparison (Grimmer, 2011).

Neural Control

The intersection of neuroscience and control theory is driven
by applications like brain-computer interfaces (BCls) and neu-
rostimulation (Yang, Connolly, & Shanechi, 2018; Acharya et
al., 2022). Closed-loop control is crucial for reliability, safety,
and efficiency (Ramirez-Zamora et al., 2018; Sarkka & Solin,
2019), and model-based approaches enable in-silico valida-
tion and causal analysis (Rueckauer & van Gerven, 2023;
Imbens & Rubin, 2015). The brain’s complexity, however,
presents unique challenges for model-based control, including
high dimensionality, stochasticity, and limited data availability
(Schiff, 2011). UDEs can offer solutions by:

* Balancing Expressiveness and Data Needs: UDEs in-
tegrate mechanistic and data-driven models, providing a
compromise between fully mechanistic models (low data
needs, potentially lower accuracy) and purely data-driven
models (high data needs, potentially higher accuracy).

* Uncertainty Quantification: Latent UDEs can esti-
mate and disentangle various uncertainties (epistemic and
aleatoric), critical for safe and reliable control.

* Real-time Adaptability: UDEs combined with adaptive nu-
merical solvers, provide a prediction accuracy/computation
trade-off essential for online application. Their continuous-
time nature allows for handling irregularly-sampled data
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and development of continuous-time control strate-
gies (Lewis, Vrabie, & Syrmos, 2012). Figure 3b demon-
strates a model predictive control approach of applying
UDEs for neural control.

Neural Decoding

Neural decoding aims to predict external stimuli from recorded
brain activity, with applications ranging from communication
interfaces to understanding brain-stimulus interactions (Rieke,
Warland, Van Steveninck, & Bialek, 1999; Horikawa, Tamaki,
Miyawaki, & Kamitani, 2013; Anumanchipalli, Chartier, &
Chang, 2019; Seeliger, Gigll, Ambrogioni, Giglitirk, & van
Gerven, 2018; Metzger et al., 2023). Current approaches rely
on regression or (approximate) Bayesian methods (Warland,
Reinagel, & Meister, 1997; Horikawa et al., 2013; Anu-
manchipalli et al., 2019; Pillow, Ahmadian, & Paninski, 2011).
UDEs trained via variational inference can be adapted for the
latter via:

* Input-Output Inversion: A straightforward approach is to
invert the input and output described during systems iden-
tification.

* Unified Encoding-Decoding: Another approach is to use
the same model for both encoding and decoding (Paninski,

Pillow, & Lewi, 2007; Kriegeskorte & Douglas, 2019). One
route would be to extend the variational inference setup in-
troduced to estimate the posterior distribution p(v | y). An-
other relevant approach would be to frame stimulus infer-
ence as an optimal control problem similar to (Schimel, Kao,
Jensen, & Hennequin, 2021). Figure 3c demonstrates both
examples.

Normative Modeling

Normative modeling characterizes brain variation and as-
sesses individual deviations, proving valuable in clinical
and developmental neuroscience, particularly in psychiatry
(Marquand, Wolfers, Mennes, Buitelaar, & Beckmann, 2016;
Insel et al., 2010; Bethlehem et al., 2022). Current norma-
tive models often focus on static measures, while dynamic
models of functional neuroimaging data remain challenging
due to high dimensionality, inter-subject variability, and noise
(Marquand et al., 2019; Rutherford et al., 2022). UDEs offer
a solution by capturing individual variability through the diffu-
sion term, while the drift term reflects the population average
that can be personalized by including covariates as fixed ar-
guments. An example is demonstrated in Figure 3d.



Discussion

There is a growing consensus that solutions to complex sci-
ence and engineering problems require novel methodologies
that are able to integrate traditional mechanistic modeling ap-
proaches and domain expertise with current machine learn-
ing and optimization techniques (Raissi, Perdikaris, & Karni-
adakis, 2019; Alber et al., 2019; Willard, Jia, Xu, Steinbach, &
Kumar, 2022; Cuomo et al., 2022; AlQuraishi & Sorger, 2021).
In this vein, we outlined the potential of universal differential
equations as a framework to facilitate this integration in neu-
roscience. Our endeavor is centered around establishing a
common modeling language across the field that can unify ex-
isting efforts in alignment with the current paradigm shift hap-
pening across scientific disciplines where neural networks and
dynamical systems are viewed as two sides of the same coin.
At first glance, these insights might not be entirely novel or
exciting for a field such as computational neuroscience, which
has been successfully applying RNNs and their variants as
discretization of ODE models for over a decade. What is ex-
citing however, is that this offers a fresh perspective and an
opportunity to connect models from different scales of orga-
nization and levels of abstraction in neuroscience under one
potent framework that aligns with ongoing developments in the
fields of generative modeling and scientific computing.
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Appendix

Case Study: Predicting Stimulus-Invoked Neural and Behavioral Responses during Visual Decision-Making
using the UDE Framework

To illustrate the practical benefits and flexibility of the Universal Differential Equation (UDE) framework outlined in this paper,
we apply it to the challenging problem of modeling multi-regional neural activity and behavioral responses during a complex
cognitive task. This case study demonstrates how the UDE approach can integrate prior knowledge, handle system stochasticity,
and provide interpretable insights while achieving strong predictive performance.

Objective We aimed to develop a generative model capable of predicting both multi-regional neural spiking activity and contin-
uous behavioral output (wheel movement) in mice performing a visual decision-making task. The model takes only the presented
visual stimuli and task timing cues as input. This serves as a concrete application for evaluating different modeling choices within
the UDE framework, particularly the trade-offs between purely data-driven and knowledge-informed approaches.

Data We utilized publicly available data from (Steinmetz, Zatka-Haas, Carandini, & Harris, 2019), involving mice trained on a
two-alternative contrast discrimination task. Mice indicate the side with the higher contrast stimulus by turning a wheel after a
go cue. The dataset includes simultaneous recordings of spiking activity from hundreds of neurons across multiple brain regions
(including visual cortex, motor cortex, thalamus, and striatum) via Neuropixels probes, as well as the corresponding wheel
velocity. Model inputs consist of the left/right stimulus contrast levels and the timing of stimulus presentation and the go cue. We
focus our analysis on data from a single session from one mouse, comprising 327 trials and recordings from 879 neurons across
5 distinct brain regions.

Model Implementation using the UDE Framework We employed the neural system identification method described in the
main text. The core idea is to model the latent neural state’s evolution as the solution to a UDE, specifically a latent Stochastic
Differential Equation (SDE), and infer its parameters and states using variational inference.

» Stimulus Encoder (0lg, 7): In this setting, low-dimensional task inputs are already provided as categorical variables describing
the contrast level for each side. We applied one-hot encoding to these inputs and concatenated the stimulus presentation
timing and the timing of the go cue. We then applied zero-order interpolation to obtain a continuous-time input signal u.

* Recognition Model ({y): We used a 2-layer bi-directional LSTM as the recognition model (. It processes an initial segment
of the observed neural and behavioral data along with the corresponding encoded stimulus (u..o) to estimate the parameters
(mean and variance) of the Gaussian approximate posterior distribution for the initial latent state xo, approximating p(xo | y, ).

* Process Model (Latent UDE): This module captures the latent neural dynamics p(x | u) via an SDE (Eq. 8). To explore the
UDE spectrum (Fig. 1b), we implemented and compared two distinct variants:

— Neural SDE: Representing a highly flexible, data-driven approach, both the drift function (ug) and the diffusion function (cg)
are parameterized by a 2-layer fully connected neural networks. This formulation aligns with the Neural Differential Equation
category representing a black-box dynamics model.

— Coupled Oscillator SDE (CO-SDE): To incorporate domain knowledge, we structured the drift term based on the dynamics
of coupled limit-cycle oscillators, a model class frequently used to study neural rhythms and synchronization (Breakspear,
Heitmann, & Daffertshofer, 2010). Specifically, we adapted the formulation from (Matthews, Mirollo, & Strogatz, 1991)
described by the following complex-valued ODE to describe the drift function of the UDE:

otg = ((ag + iwg)x + [x[?x + Ko (11)x) (13)

where x represents the position of oscillators in the complex plane, a the bifurcation parameters, ® denotes the natural
frequency, and K represents all-to-all coupling strength. This formulation captures the essential dynamics of coupled limit-
cycle oscillators near a supercritical Hopf bifurcation. Leveraging this model in the UDE formulation, we used an MLP
to map the inputs to the coupling strength K. We used another MLP to define the diffusion function. This formulation
represents a grey-box dynamics model, where some of the the parameters of the model are learned via neural networks.

+ Observation Model (Ag): Following the principles in Section 4.1.4, separate decoders map the latent state x(¢) to the different
observation modalities:

— Neural Data (Spikes): An MLP transforms the latent state, and its output is exponentiated to yield the rate parameter for a
Poisson distribution, predicting spike counts for each neuron. Distinct MLPs are used for neurons in different recorded brain
regions, allowing for region-specific mappings.
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Figure 4: Generative modeling of neural and behavioral data via latent coupled oscillators across three different
datasets. The generative model takes as input the contrast levels of both the right and left images, wether the stimulus is
presented or not, and wether the go cue is issued or not. The model is trained to predict both neural activity across multiple brain
regions and wheel velocity. Here latent neural dynamics is represented a latent UDE representing stochastic coupled oscillators.
The frequencies of the oscillators after training is displayed along with the dynamic coupling strength inferred for an example
trail. Abbreviations: MOp: primary motor area , LSc: lateral sensory cortex, PT: posterior thalamus, CP: caudoputamen, LSr:
Lateral sensory rostral area, PMd: dorsal pre-motor cortex, M1: primary motor cortex.

— Behavioral Data (Wheel Velocity): Two parallel linear layers map x(¢) to the mean and variance parameters of a Gaussian
distribution predicting the continuous wheel velocity.

* Approximate Posterior SDE: Training employs variational inference (Section 4.2). An auxiliary SDE (Eqg. 10) defines the
approximate posterior path measure Q. Its drift uy is parameterized by an MLP conditioned on the latent state %, observations
y, and encoded stimulus u. Crucially, it shares the same diffusion function 6g as the generative (prior) SDE to ensure a
tractable KL divergence (D (Q || P)).

Training All model parameters (0 for the generative model, ¢ for the recognition model) are trained jointly by maximizing the
Evidence Lower Bound (ELBO) via stochastic gradient descent. Gradients are computed using backpropagation through the
entire computational graph, including the numerical SDE solver (Euler-Maruyama).

Results and Benefits of the UDE Framework We evaluated the predictive performance of the trained models on held-out
neural and behavioral data from the Visual Decision-Making dataset. Specifically, we compared stochastic UDE-based models
(Neural SDE, CO-SDE) to their deterministic counterparts (Neural ODE, CO-ODE, where 69 = 0) and to a standard LSTM
baseline. Neural activity prediction was quantified using the bits-per-spike (bps) metric (Pei et al., 2021), while behavioral
prediction was assessed via the R” score. The results reveal a number of key benifits of adopting UDE-based models.

Table 1: Performance comparison of latent sequential models on the Visual Decision-Making dataset. Neural responses are
evaluated via bits per spike (bps) and behavioral responses via RZ. The number of parameters of the generative dynamics for
each model is also shown. Encoders and decoder architectures are shared across all models. Arrows (1/]) indicate whether
higher or lower values are better. Best performances are highlighted in bold. Results are the mean and std. of 5-fold cross-
validation.

Latent Dynamics # Params | Neural (bps) T Behavior (R?) 1

LSTM 33280 0.16 +0.006 0.66 +£0.015
Neural ODE 4880 0.15 £ 0.010 0.59 +0.025
CO-ODE 465 0.21 +0.009 0.61 £0.02
Neural SDE 4944 0.18 +0.012 0.70 £ 0.02
CO-SDE 526 0.22 x0.011 0.67 £0.025

» Stochasticity Improves Neural Prediction. The SDE-based models (Neural SDE and CO-SDE) outperformed their ODE-
based counterparts in predicting neural activity, achieving higher bits-per-spike values. This highlights the benefit of explicitly
modeling intrinsic stochasticity in neural processes, rather than attributing variability solely to uncertainty in initial conditions.
The UDE framework, when realized through SDEs, thus better captures trial-to-trial variability in neural dynamics.



» Structural Priors Enable Parameter-Efficient Learning. The CO-SDE model, which embeds oscillatory prior structure into
the latent dynamics, matched or slightly exceeded the performance of the purely data-driven Neural SDE in neural prediction
and performed comparably in behavioral prediction. Importantly, it achieved this with an order of magnitude fewer parameters.
Compared to LSTM models, CO-SDE required over 60x fewer parameters. This result demonstrates that incorporating domain
knowledge via structured priors can act as an effective inductive bias, leading to models that are both compact and also highly
performant.

* Unified Framework for Model Comparison. By situating both black-box (Neural SDE) and grey-box (CO-SDE) models
within the same UDE framework and training them using identical variational inference procedures, we enabled a direct and fair
comparison. This flexibility facilitates rigorous investigation into how different structural assumptions affect model performance
and generalization, supporting systematic exploration along the spectrum from data-driven to theory-driven modeling.

* Interpretability Through Structured Dynamics. The structured design of CO-SDE provides avenues for mechanistic inter-
pretation. Analysis of the learned time-varying coupling strength parameter K (u(t)) revealed systematic modulations aligned
with task events (e.g., stimulus onset, go cue), suggesting dynamic shifts in network-level interactions during decision-making
as illustrated in Figure 4. Such insights are difficult to extract from black-box models, underscoring how embedding known
structure within UDEs can provide anchor points for scientific interpretation, even if full interpretability remains challenging.

* Bridging Modeling Traditions. This study illustrates how the UDE framework naturally bridges different modeling ap-
proaches: the Neural SDE represents a data-driven, deep learning-based model, while the CO-SDE integrates classical,
phenomenological structure from computational neuroscience. Both models can be trained, compared, and interpreted
within the same modern machine learning infrastructure, demonstrating UDESs’ potential to unify traditionally distinct mod-
eling paradigms.

Conclusion This case study, applying the UDE framework to model complex neurobehavioral data from a decision-making
task, showcases its potential. By leveraging latent UDEs, we demonstrated the framework’s ability to effectively handle stochas-
ticity, integrate prior knowledge for improved efficiency, facilitate systematic model comparison, and offer avenues for interpre-
tation. These capabilities position UDEs as a versatile and powerful common language for building, testing, and understanding
models of neural systems.



