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Abstract
Songbirds are excellent models for studying sensorimo-
tor sequence learning. Their songs are composed of
vocal units, called syllables. The ordering of syllables
in song is governed by syntax rules that determine syl-
lable transition probabilities. We recently used regres-
sion analysis to show that canaries, a seasonal songbird,
change transition probabilities across days and afford
a new model for studying how the brain adapts syntax
rules. But, regression analyses, which calculate transi-
tion probabilities in neighboring song batches, are noise-
limited in small subsets of songs.

Here, to overcome this limitation and study the dynam-
ics of syntax rules in fine temporal resolution we develop
a neural filtering approach that infers time-varying transi-
tion probabilities from birdsong sequences. Inspired by
deep learning methods for analyzing neural spiking data,
we designed an autoencoder that treats each song as an
observation from a probabilistic syntax model whose pa-
rameters change between song bouts. We carried sim-
ulated experiments, modeling both simple Markov and
second-order dependencies of transitions, and demon-
strate that our method accurately tracks syntax changes.

These findings underscore the potential of our ap-
proach to reveal the neural mechanisms underlying dy-
namic sensorimotor sequence generation.
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Introduction
Songbirds offer valuable models for studying the neural mech-
anisms underlying sensorimotor behaviors. They acquire their
vocal repertoire through memorizing tutor songs and itera-
tively refining their vocal output (Fee, 2004). The result-
ing song is comprised of distinct vocal syllables. In vari-
able singers like Bengalese finches and canaries, the sequen-
tial arrangement of syllables, the syntax, exhibits probabilistic
rules where syllable transitions depend on the identity and or-
der of preceding syllables. In canaries, these syntax depen-
dencies can bridge as many as 50 syllables and extend over
several seconds of behavior (Markowitz, Ivie, Kligler, & Gard-
ner, 2013; Cohen et al., 2020).

Birdsong syntax is often assumed to reflect a stationary
Markov process that sets fixed transition probabilities between
syllables (Zhang, Wittenbach, Jin, & Kozhevnikov, 2017).
However, we recently showed that canaries alter their tran-
sition probabilities across days and weeks during their spring
mating season (Levin & Cohen, 2024)—perhaps influenced
by hormonal fluctuations, seasonal cues, or subtle learning

mechanisms. These syntax rule dynamics were captured us-
ing regression-based methods that compute daily-averaged
transition probabilities from batches comprising roughly 100
songs per day. Such methods face an inherent trade-off be-
tween temporal resolution and statistical power. Moreover, en-
forcing a single regression timescale and functional form may
obscure the system’s true dynamics.

To address these limitations, we developed a neural filter-
ing approach. Rather than imposing strong parametric con-
straints on how syntax rules change over time, we leverage
a Latent Factor Analysis via Dynamical Systems (LFADS)
framework to learn the dynamics of transition probabilities di-
rectly from the data (Pandarinath et al., 2018). We create
an autoencoder that processes observed syllable-to-syllable
transition counts (bigrams), and generates latent (i.e., not di-
rectly observed but inferred from the data) transition logits that
evolve flexibly over time.

We demonstrate the effectiveness of this approach us-
ing simulated data that mimics canary and Bengalese finch
songs. In these simulations, transitions vary at different rates.
Some follow monotonic trends, while others exhibit oscillatory
patterns. We find that the model consistently outperforms
traditional estimates derived from bigram counts – whether
these counts are used directly (raw) or after applying a simple
smoothing procedure – highlighting its ability to detect finer
variations in song production in greater temporal resolution.

By revealing these changes in a data-driven manner, our
framework can offer new insights into the neurobiological
mechanisms underlying birdsong flexibility. Future applica-
tions of this approach may extend to large datasets of canary
or Bengalese finch recordings, helping to uncover how neu-
ral circuits balance robust song production with ongoing syn-
tax rule changes. More broadly, this method could provide
insights into sequence generation in other domains, such as
human speech or during motor skill acquisition.

Methods
Neural Network–Based Optimal Filtering
Our goal is to predict latent transition logits that underlie ob-
served bigram counts. In our notation, hat-marked quantities
(e.g., Ẑk, P̂(Ẑk)) denote model predictions; those without a
hat (e.g., Zk, P(Zk)) are ground truth from the simulated data.

We define our model through a recurrent mapping:

Ẑk = fΣ(yk, Ẑk−1),

where fΣ is generally a smooth function parameterized by
Σ and implemented as a recurrent artificial neural network.
Here, yk is the observed bigram counts for batch k computed
from 10–60 songs per batch.



The predicted latent logits, Ẑk, are converted into transition
probabilities using a row-wise softmax g(·):

Prob(i → j) = P̂(Ẑk)i j = g(Ẑk)i j =
exp((Ẑk)i j)

∑ j′ exp((Ẑk)i j′)
.

where i and j are syllable types. We learn the model by mini-
mizing the cross-entropy loss,

L(Σ) =−∑
k

∑
i, j

P(Zk)i j log P̂(Ẑk)i j,

using backpropagation through time.

Autoencoder Architecture

Our neural autoencoder (Figure 1), inspired by the LFADS
framework, employs a bidirectional encoder-decoder struc-
ture. Bigram counts from song batches are first processed
by a bidirectional GRU encoder network to infer initial la-
tent states. A second recurrent controller network dynami-
cally updates inferred latent inputs. These latent variables
feed into a bidirectional GRU-based generator network, pro-
ducing latent factors that map to transition logits. Row-wise
softmax normalization transforms logits into probability tran-
sition matrices. Training optimizes cross-entropy reconstruc-
tion loss augmented by a Kullback–Leibler (KL) divergence
penalty between the inferred latent distribution and a Gaus-
sian prior, encouraging the latent space to remain smooth and
well-regularized, thereby capturing the underlying syntax vari-
ations.

Figure 1: Network architecture. Autoencoder
(LFADS-inspired) encoding batch bigram counts into la-
tent transition logits, row-wise softmax normalization to
transition probabilities, and reconstruction.

Simulation of Birdsong Sequences

To evaluate the model, we generated synthetic song se-
quences of 3–12 syllables using a six-syllable alphabet (in-
cluding start and end markers). The transition probabili-
ties were governed by either a first- or second-order Markov
process. For each simulated process, the batch-wise tran-
sition matrices were used to draw a single realization of
song sequences. Changes in the transition probabilities were
imposed over 7–100 sequential batches, following either a

monotonic trajectory or a periodic trajectory (see Figure 2 for
examples).

The simulated dataset comprised between 20K and 50K
independent processes (with one realization per process),
which were then split into a training set (80%) and a test
set (20%). We compared the model’s predicted transition
probabilities against two baseline methods: (1) raw bigram
counts derived directly from the simulated sequences and (2)
smoothed bigram counts obtained by applying a running aver-
age over a window of 5 batches to reduce noise.

Results

Figure 2: Simulation results. Transition probabilities (top) and
cross-entropy errors (bottom) for first (A) and second-order (B) pro-
cesses evolving monotonically (left) or periodically (right) over 50
batches of 10-60 songs each. Autoencoder estimates (dashed)
closely track true transitions (solid), outperforming smoothed (dot-
ted) and raw (not shown) baselines.

Figure 2 summarizes the core findings. While raw bigram
estimates are noisy and smoothed estimates introduce bias,
our autoencoder predictions more accurately track both grad-
ual and oscillatory shifts in the ground-truth probabilities. This
advantage in performance appears robust across different de-
pendency orders (first vs. second) and across varying tran-
sition evolution patterns (monotonous vs. periodic). Quan-
titatively, the model maintains lower cross-entropy with the
true transition probabilities and exhibits lower variability across
simulated processes (shaded regions).

Discussion
Most studies of birdsong treat syntax rules as static, yet ac-
cumulating evidence suggests that the underlying transition
probabilities may vary over time. By modeling each batch
of songs as a time-varying probabilistic process, our autoen-
coder offers an approach to track changes in transition prob-
abilities that significantly improve accuracy and temporal res-
olution compared to methods that assume stationarity or im-
pose strict regression windows.

While our current work does not yet demonstrate this on
large-scale real-world recordings, the method has the poten-
tial to enable such analyses and reveal how changing envi-
ronments or internal states shape birdsong syntax rules. Be-
yond songbirds, our approach may generalize to other do-
mains where hidden dynamics influence sequence genera-
tion—such as sensorimotor learning, or alterations in speech
syntax associated with aging and disease.
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