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Abstract
Humans successfully transform acoustic signals into
meaning despite great variability in the speech signal.
The underlying mechanisms that enable such robust per-
ception remain unclear, in part due to the absence of
models that replicate human performance and that could
be used to test mechanistic hypotheses. We built an ar-
tificial neural network model of continuous speech per-
ception, optimized to recognize sequences of sub-lexical
units from cochlear representations of acoustic signals.
We then developed non-word recognition benchmarks
to evaluate human and model speech perception. The
model closely matched human performance and repli-
cated human-like patterns of phoneme recognizability
and confusions. However, human-model similarity was
dependent on recurrent processing, suggesting that hu-
man recognition depends critically on bidirectional inte-
gration of information in the speech signal. The model
and benchmark set the stage for future investigations
into the neural and perceptual mechanisms underlying
speech.
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Introduction
The core computational challenge of speech perception
arises from the lack of a consistent one-to-one mapping be-
tween acoustic units in the signal and the sub-lexical units
(e.g., phonemes, syllables) that subserve linguistic structure
(Liberman, Cooper, Shankweiler, & Studdert-Kennedy, 1967;
Peterson & Barney, 1952; Perkell & Klatt, 2014). Artificial neu-
ral networks (ANNs) have helped explain human-like percep-
tual abilities in other domains of audition (Francl & McDer-
mott, 2022; Saddler, Gonzalez, & McDermott, 2021), and if
optimized for speech recognition might similarly yield insight
into human speech perception. However, most available ANN
speech models lack biological plausibility and often do not
exhibit human-like patterns of performance (Weerts, Rosen,
Clopath, & Goodman, 2022; Adolfi, Bowers, & Poeppel, 2023).
Progress in model development is likewise hindered by the
limited availability of large-scale behavioral tasks with which
to compare models to humans. We sought to develop a model
of continuous speech perception along with novel behavioral
benchmarks to allow systematic comparisons of phoneme
recognition in humans and models.

Methods
Model architecture and task objective
The model (PARROT) maps continuous speech waveforms
into their constituent sub-lexical units (either characters or
phonemes). The first stage is a simulation of the auditory
periphery adapted from prior work (Feather, Leclerc, Madry,
& McDermott, 2023), with stages of bandpass filtering, half-
wave rectification, low-pass filtering, and amplitude compres-
sion to simulate auditory nerve representations. Cochlear rep-

Figure 1: PARROT architecture and training pipeline.

resentations are fed into six 2-dimensional convolutional lay-
ers (each with 512 channels, followed by batch normalization
and ReLU) which downsample the signal to 50 Hz. The re-
sulting representations are passed through six bi-directional
Long Short-Term Memory (LSTM) layers (hidden size of 512),
which capture temporal dependencies across frames. Finally,
the LSTM hidden states are projected into either a 27-class
character space (26 characters and a blank class) or a 40-
class phoneme space (39 phonemes and a blank class) us-
ing a linear fully connected layer followed by a softmax func-
tion. The model was trained to maximize the probability of the
training annotation using a Connectionist Temporal Classifica-
tion (CTC) loss (Graves, Fernández, Gomez, & Schmidhuber,
2006). During inference, predicted tokens were obtained from
the softmax distributions using CTC. Character/Phoneme Er-
ror Rate (C/PER) was calculated after aligning predicted and
ground truth tokens using the Levenstein distance algorithm
(Miller, Vandome, & McBrewster, 2009).

Spoken non-word recognition experiment

To assess speech perception without linguistic influences, we
designed a non-word recognition task. Participants heard syn-
thesized non-words and typed what they heard. We obtained
non-words from a pseudo-word generator that produces non-
word variants from real words, abiding by English phonotactics
(Keuleers & Brysbaert, 2010). We converted character tran-
scriptions to phoneme strings using a grapheme-to-phoneme
model trained on English.

Results
Models exhibit human-like phoneme recognition

We evaluated performance on the spoken non-word recogni-
tion task by computing the phoneme error rate (PER) for each
non-word in the experiment. Both models performed slightly
worse than humans (mean PER: PARROT(Char)=35%;
PARROT(Phone)=33%; Humans=31%). Individual phonemes
varied in the accuracy with which they were recognized (quan-
tified as d’), and the phoneme-wise accuracy was highly cor-
related between humans and both models (PARROT(Char):
r=0.97; p<0.01, PARROT(Phone): r=0.93; p<0.01; Figure
2b). The correlation remained high when calculated sepa-



Figure 2: (a) Phoneme-wise d’ for humans vs. character-
based PARROT (left) and phoneme-based PARROT (right)
(b) Phoneme confusion matrices in humans and models. (c-
d) Phoneme-wise recognizability for humans vs. character-
based PARROT (left) and phoneme-based PARROT (right),
measuring hit rate, and confusion rate, respectively.

rately for consonants and vowels. The models also replicated
the pattern of confusions exhibited by humans (see Figure
2a). The diagonal (hit rate) and off-diagonal entries (error pat-
terns) of confusion matrices were each individually strongly
correlated between humans and PARROT (see Figures 2c-d).

Context is critical to human-like speech perception
To investigate the mechanisms underlying the observed
human-model alignment, we ablated the recurrent neural net-
work stages and trained the model on the same task (Figure
3a). A model without recurrent-based mechanisms exhibited
worse human-model alignment (Figure 3b-d).

Effect of context directionality on human-model
alignment
To evaluate how the direction of contextual processing influ-
ences human-model alignment, we trained three variants of
PARROT (Figure 4a): Acausal (with bidirectional LSTM layers
providing access to both past and future information), Causal
(unidirectional LSTM layers allowing access only to the past),
and Anti-causal (unidirectional LSTM layers reversed in time,

Figure 3: (a) PARROT architecture with and without recurrent
layers. (b-d) Phoneme-wise recognizability between humans
and PARROT without recurrence, measuring d’, hit rate, and
confusion rate, respectively.

Figure 4: (a) Schematic for PARROT with different directions
for contextual processing. (b-d) Phoneme-wise recognizability
between humans and PARROT variants, measuring d’prime,
hit rate, and confusion rate, respectively. The reported corre-
lation coefficient is Pearson’s correlation.

giving access only to future samples). The Acausal model
outperformed the Causal and Anti-causal models and showed
higher human-model alignment (Figures 4b–e).

Conclusions
We developed a novel deep learning model optimized to rec-
ognize sub-lexical units using a simulated cochlear front-end,
that produced either character or phoneme labels. We devel-
oped new benchmarks to evaluate humans and models at a
sub-lexical level, and found that the models performed simi-
larly to humans. We then used the models to investigate con-
textual processing in human speech perception, finding that
both past and future context was critical to obtaining human-
like behavior. The results suggest that aspects of human-like
speech perception emerge by optimizing for sub-lexical recog-
nition, and that humans rely on bidirectional contextual pro-
cessing to overcome the local ambiguity of speech signals.
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