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Abstract
In everyday decisions, the same choice option can yield
different rewards depending on the context. Two coats
will, for instance, have different utility depending on
whether the goal is to be shielded from rain or to dress for
a dinner. We reanalyzed behavioral data from a previous
study, where participants switched between contexts with
different object features predicting rewards: color in one
context and motion in another (Moneta et al., 2023). Par-
ticipants were explicitly cued in each trial which features
to focus on, and outcome depended only on the cued con-
text. Our analysis focused on how competing contexts
influence choice and learning trial by trial. We identified
two potential learning signals from irrelevant features,
carrying information about the value expectation for (1)
the chosen object’s irrelevant feature (Object Prediction
Error) and for (2) the best feature in the irrelevant con-
text (Context Prediction Error). Combining reinforcement
learning and general linear models, we found evidence
for both learning signals influencing participants’ behav-
ior, i.e. that value updates were also guided by the dif-
ference between context-irrelevant values and outcomes.
The strongest support was found for Object Prediction Er-
ror updates. Through examining how outcome-irrelevant
information influences subjective value assignment, we
deepen our understanding of how competing goals are
processed and shape future choice behavior.
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Introduction
Determining feature relevance in a dynamic, multidimensional
environment is an essential challenge for goal-directed behav-
ior (Niv et al., 2015). Choice options often have multiple fea-
tures, with relevance varying according to the specific con-
text at hand (Frömer, Dean Wolf, & Shenhav, 2019; Martino &
Cortese, 2023). However, features initially deemed irrelevant
may become relevant in the future, necessitating flexible re-
trieval and updating of context-dependent value information.
Moneta, Garvert, Heekeren, and Schuck (2023) showed that
when choosing between options, an alternative context and
its values interfered with the relevant one, competing to guide

behavior. Here, we reanalyze the behavioral data of their main
task and ask whether such cross-context interference extends
beyond choice deliberation to the processing of the outcome
via contextually irrelevant value-updating signals, i.e predic-
tion errors.

Results

Thirty-seven participants switched between contexts where
reward was predicted by either stimulus color or motion direc-
tion. Participants were first trained to associate four color and
four motion features with discrete rewards (balanced across
participants). In each trial of the main task, they were ex-
plicitly cued which context to focus on and were instructed
to choose the higher-valued of two simultaneously presented
random dot kinematograms (Fig.1a). Outcome was depen-
dent only on the features of the cued context

Moneta et al. (2023) found that while accuracy was over-
all high (µ = 0.9,σ = 0.05, one-sample t-test against chance:
t(36) = 50.27, p < .001), participants were slower and less
accurate when the irrelevant context implied a different action
(as the example in Fig.1a). This effect was found to be further
modulated by the best feature of the irrelevant context (EVi,
Fig.1a), showing that during choice-deliberation, participants
fully processed the counterfactual choice according to the cur-
rently irrelevant context.

Prediction Errors of the Irrelevant Context. We hypothe-
sized that irrelevant features also influence subjective value
(ŝv) updating, which becomes evident in trial-by-trial fluctu-
ations in choice behavior, despite deterministic outcomes on
which participants were trained extensively. To test this, we
propose two learning signals that might arise from irrelevant
outcome expectations: First, an Object Prediction Error (OPE)
captures the difference between the obtained reward and the
value expectation of the chosen object’s irrelevant feature, i.e.
the irrelevant feature of the chosen cloud (irrelevant target:
IT ; Fig.1a, teal). Second, a Context Prediction Error (CPE)
reflects the difference between the obtained reward and the
reward participants would expect to receive were they in the
other context (best irrelevant feature or expected value of the
irrelevant context: EVi; Fig.1a, orange).

Each PE can update values via two pathways: First, they
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Figure 1: a. Schematic of a color trial (left): the cued color features (top) indicate to choose right, while the outcome-irrelevant
motion features (bottom) imply otherwise. We hypothesized that after receiving reward (R), two contextually irrelevant prediction
errors (right; CPE, orange; OPE, teal) can update latent subjective value estimations (ŝv). Each PE could send an update signal
either to the relevant feature (solid arrows, T ) or to the irrelevant features (dashed arrows, EVi highest-valued feature of irrelevant
context, or IT irrelevant feature of chosen option). b. The summed AIC showed that using RL-estimated ŝv improved the fit using
either PE updates in almost any pathway according to the schematic updating formula over a baseline GLM using objective
values. Both OPE (left, light teal) and CPE (right, light orange) contribute most when updating both pathways simultaneously
(Oboth, Cboth), more than when updating only the relevant (Orel, Crel, solid arrows in a) or only the irrelevant pathway (Oirrel,
Cirrel, dashed arrows in a). Darker bars show model results where the relevant, irrelevant or both pathways of the other group
were added to the best fitting model (in trials where IT and EVi are different, see main text). c. Participants reacted faster in
single-feature trials (only relevant features present) when their ŝvT were in the upper tertial versus in the lower (within-subject
tertial split of trials (p = .007). d. Fitted regressor betas for the subjective value-difference (v̂d) in the GLM of Oboth (p < .001),
which is introduced only through the OPE updates. Points are participants.

can update the choice’s relevant feature (Fig.1a, solid arrows),
implying that participants update the value of the chosen fea-
ture (relevant target feature: T ) based on what they would
have expected to get in the irrelevant –but competing– con-
text (for the same cloud: OPE, for the best feature: CPE). For
instance, for the same chosen cloud in Fig.1a, participants
might hold an expectation tied to its horizontal motion (ŝvIT ,
here 10 p). Thus, the ŝv of blue may be updated also based
on the expectation of 10 p (solid OPE arrow). The next time
participants see blue, its ŝv might be slightly reduced due to
the OPE update before. Second, the PEs could update the
ŝv of the irrelevant features themselves, even though outcome
depended solely on the relevant features (OPE: updates the
same choice’s irrelevant feature IT , CPE: updates the best
feature of the irrelevant context EVi; Fig1a, dashed arrows).
We employed reinforcement learning (RL) models (Sutton &
Barto, 2018) to estimate ŝv, which were then used as predic-
tors for a GLM explaining reaction time. We compared our
models to a baseline GLM which assumes stable value esti-
mates, i.e. true values with no cross-trials influence from the
irrelevant context (best model of Moneta et al., 2023).

Strongest support for Object Prediction Error. Model
comparison support that RT is best explained by accounts
that incorporate value updating of the relevant and irrelevant
features through OPE & CPE signals (Fig.1b, light colors,
AIC differences to baseline from winning models ∆AICOboth =
−403.2, ∆AICCboth =−331.0) Note that in some trials the fea-
tures EVi and IT are the same (if the blue cloud in Fig.1a had
diagonal motion), which means that OPE and CPE are the
same. To disentangle their contributions we refitted the win-
ning model and added the updating pathways of the respec-

tive other PE only in trials where OPE and CPE are different.
We found that only adding OPE-updates to the winning CPE
model improved the fit, but not when adding CPE-updates
to the winning OPE model (Fig.1b, dark colors). Hence, the
dominating features behind irrelevant value updates are likely
those associated with the same choice (reflected in the OPE).
Future work is planned to further investigate the unique con-
tributions of each PE.

Effects of subjective values on RT. Next, we further as-
sessed the contribution of subjective value estimates derived
from the winning OPE model. We tested this on single-feature
trials, where only the relevant features were presented (these
were interleaved with the dual-feature trials of Fig.1), using a
within-subject tertial split on the estimated ŝvT . Indeed, aver-
age RTs in single-trials were slower for choices when the cur-
rent ŝvT was lower compared to when it was higher (t(36) =
2.85, p = .007, Fig.1c). Since there is no information from an
alternative context in these trials, this effect provides evidence
for irrelevant influences from previous trials. Lastly, by design
the value difference of the relevant features was fixed at 20 p
(and outcomes were deterministic). However, the ŝv of fea-
tures fluctuated over time. This introduced a subjective value
difference between relevant features (v̂d) which entered the
GLM as a new regressor. We found that this contributed sig-
nificantly to explaining RT, such that participants reacted faster
for higher v̂d (two-sided 1-sample t(36) = −4.24, p < .001
Fig.1d), consistent with prior research reporting faster deci-
sions with larger value differences between options (Hunt et
al., 2012).



Conclusion
Our results provide evidence that learning signals arising from
contextually irrelevant features lead to latent subjective value
fluctuations, and consequently influence future behavior. We
found the strongest evidence for the Object Prediction Error in-
terfering with the value-updating process post-outcome. This
indicates a within-object spillover, making participants more
prone to assigning credit to the irrelevant feature of the cloud
they deliberately clicked on. Expanding our understanding of
how irrelevant information interferes with goal-directed value
computations hints towards how context separation in com-
plex environments is performed in humans and might inform
further research on its implementation in the brain.
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