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Abstract
When a mosquito lands on your finger, swatting it re-
quires your brain to calculate its location in the exter-
nal space, which depends on the body’s 3D posture.
Two competing computational hypotheses explain how
the brain solves this challenge: the integration hypothe-
sis, where tactile signals are transformed into spatial co-
ordinates by integrating touch and posture information;
and the cueing hypothesis, where touch merely cues a
location on the body whose position is specified via pro-
prioception. If touch merely triggers proprioceptive lo-
calization (cueing hypothesis), both localizing touch and
body parts in space should rely on the same Bayesian
computations, with identical prior expectations about the
mosquito’s spatial location; if they involve different com-
putational processes (integration hypothesis), the under-
lying priors might differ. Twenty-one participants local-
ized their fingers via proprioception or touch in nine hand
positions. We compared Bayesian model variants with
different parameter sharing structures and quantified the
overlap between these processes. Models allowing dif-
ferent prior distributions between modalities provided the
best fit for most participants. The distances between fit-
ted spatial priors showed 15 out of 19 participants had
significantly different prior distributions across modali-
ties. Our findings provide computational evidence that
tactile localization involves different processes beyond
those used in proprioceptive localization, providing evi-
dence against the cueing hypothesis.

Keywords: tactile localization; proprioception; Bayesian mod-
eling; spatial perception; sensory integration

Introduction
When a mosquito lands on your finger, your brain calculates
its location in external space—a process that depends on
your hand’s position. How exactly does the brain transform
a skin-based sensation into external spatial coordinates? Two
competing frameworks explain this challenge. According to
the integration hypothesis, touch (i.e., the mosquito) is ini-
tially coded in a somatotopic reference frame and transformed
into external space by integrating tactile and 3D postural in-
formation (Longo, Mancini, & Haggard, 2015; Tamè, Azañón,
& Longo, 2019; Canzoneri, Ferrè, & Haggard, 2014). In
contrast, the cueing hypothesis suggests that tactile signals
merely serve as a cue to a specific location on the body, which
is localized via proprioception (Heed, Burbach, Rödenbeck,
Habets, & Fuchs, 2024; Maij, Seegelke, Medendorp, Meden-
dorp, & Heed, 2020). The key distinction is that in the cue-
ing hypothesis, localizing touch is identical to localizing the
body; touch functions merely as a proprioceptive cue, direct-
ing attention to a body part whose spatial position is computed
through the same mechanisms used for proprioceptive local-
ization.

We formalize spatial localization as Bayesian inference
in a two-dimensional workspace (Figure 1). When a tar-
get appears at location x, it generates sensory evidence e.

The brain estimates location x using Bayes’ rule: P(x|e) ∝

L(e|x)× Π(x), where L(e|x) is the likelihood function and
Π(x) is the prior distribution. The integration hypothesis pre-
dicts that the additional transformations required for tactile
remapping could introduce distinct noise patterns in the like-
lihood function (Lt(e|x) ̸= Lp(e|x)) and unique biases in the
prior distribution (Πt(x) ̸= Πp(x)). In contrast, the cue hy-
pothesis proposes identical computational processes where
touch merely indicates which body part to localize via propri-
oception, predicting identical priors (Πt(x) = Πp(x) = Πc(x))
and likelihoods (Lt(e|x) = Lp(e|x) = Lc(e|x)), resulting in:
Pt(x|e) = Pp(x|e) ∝ Lc(e|x)×Πc(x).

Computational models have proven powerful for under-
standing perceptual biases in both domains (Goldreich, 2007;
Peviani, Joosten, Miller, & Medendorp, 2024), yet formal com-
parisons remain lacking. Our study addresses this gap by im-
plementing a Bayesian modeling framework that directly com-
pares tactile and proprioceptive spatial localization.

Methods
We modeled prior and likelihood as 2D Normal distributions:
L(e|x) =N (x∗,Σlik) and Π(x) =N (µpr,Σpr), where x∗ repre-
sents true touch location, therefore the likelihood is unbiased.
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Figure 1: A. Independent and Shared Model. B 2D Bayesian
Localization Framework (θ refers to model parameters)

We developed four model variants differing in how param-
eters are shared across modalities: (1) Independent Model,
with distinct priors and likelihoods for each modality; (2) Fully
Shared Model, with all parameters shared; (3) Shared Prior
Model, with a common spatial prior but modality-specific sen-
sory likelihoods; and (4) Shared Likelihood Model, with
shared sensory likelihoods but distinct spatial priors. The two
models represent intermediate points between the integration
hypothesis and the cue hypothesis, offering weaker forms of
each hypothesis respectively.

Twenty-one healthy adults participated. Participants sat up-
right in a chair, their gaze directed downward onto a monitor



mounted horizontally (screen facing upward) on a rigid alu-
minium frame. A gap between the desk and the monitor al-
lowed the left forearm to pass underneath the screen so that
the left hand rested on a platform with three solenoid tactors.
These solenoids were aligned with the pads of the index, mid-
dle, and ring fingers delivering tactile stimulation. Participants
performed tactile localization (responding to solenoid taps) or
proprioceptive localization (responding to targets given by text
on the screen) by clicking perceived locations on the screen
using the mouse with their right hand. An opaque cloth on
their left forearm prevented visual feedback of the hand. (Fig-
ure 2).

Figure 2: A. Trial structure, B. Experimental set up

Results
We first compared the models based on how well they explain
the localization data. Our model comparison revealed that the
Independent Model provided the best fit for the most partic-
ipants (Figure 3. 16 out of 19 participants, ∆ BIC difference
relative to the fully shared model ranging from –425.21 to 4.65,
with a mean of -210.28)

Figure 3: Model comparison across participants using ∆ BIC
relative to the best model. Each dot represents an individual
participant’s ∆ BIC for a given model.

Figure 4 shows an example participant with fitted priors. To
investigate if the fitted priors are different, which would be in-
consistent with the cueing hypothesis’s prediction of identical
priors, we calculated the distances between the fitted priors for
tactile and proprioceptive modalities using the Wasserstein-2

metric (Figure 5). We found that most of the participants ex-
hibited significantly distinct spatial priors between modalities
(p < 0.05, permutation test).
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Figure 4: Fitted Tactile and Proprioceptive priors for a partici-
pant.

Figure 5: Observed Wasserstein-2 distances vs 95th per-
centile thresholds from null distributions (1000 shuffles per
participant). Orange points indicate significantly different pri-
ors between modalities.

Conclusion
Our results suggest that tactile and proprioceptive spatial lo-
calization rely on distinct computational mechanisms, which
is inconsistent with the cueing hypothesis but compatible with
the integration hypothesis. The different prior distributions
across the modalities indicate that tactile localization involves
transformations beyond those used in proprioceptive localiza-
tion, contributing to our understanding of how the brain con-
structs spatial representations from different sensory inputs.
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