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Abstract

Proposals differ on how the brain accounts for the un-
certainty of perceptual variables —either by representing
them as probability distributions that explicitly encode
uncertainty in their width (Knill & Pouget, 2004), or by
exploiting the correlation between the uncertainty of one
variable (e.g., orientation) and the value of others (e.g.,
contrast), using the latter’s point estimates as heuristic
proxies (Bertana, Chetverikov, van Bergen, Ling, & Jehee,
2021). The two approaches offer distinct advantages—
probabilistic representations provide superior data- and
memory-efficiency, while proxy-based strategies impose
substantially lower computational demands—-and each
has its proponents, depending on which advantage is
considered more relevant to brain function (Barthelmé
& Mamassian, 2010; Meyniel, Sigman, & Mainen, 2015;
Koblinger, Fiser, & Lengyel, 2021). Rather than strictly
contrasting these hypotheses, we follow a normative per-
spective and argue that both strategies can emerge nat-
urally in a unified framework when time-evolving approx-
imate inference is optimized to solve realistic tasks in-
volving the joint estimation of multiple interacting vari-
ables. We formalize this idea by modeling behavior as
the output of an ideal observer that combines approxi-
mate probabilistic perceptual representations with fast,
coarse proxy information-yielding a flexible hybrid ap-
proach. Through simulations, we show that the model
adaptively relies on proxies to compensate for the coarse-
ness of approximate inference. Finally, by directly com-
paring the model’s output to empirical data, we demon-
strate that observed behavior qualitatively aligns with the
predictions of this hybrid model.
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Introduction

Traditional experimental approaches often frame probabilistic
and proxy-based models as a strict dichotomy (Barthelmé &
Mamassian, 2010), and try to distinguish between them by
designing tasks that heavily capitalize on the hallmark advan-
tages of probabilistic inference —such as data and memory ef-
ficiency —where non-probabilistic models are expected to fail
(Kérding & Wolpert, 2004; Maloney & Mamassian, 2009). In

contrast, to explore the potential hybrid solutions, we adopted
a fundamentally different approach—shifting the focus from
absolute performance to the behavioral signatures of plausible
algorithmic realizations.

We built the hybrid probabilistic model around three key
considerations: first, navigating environments of realistic com-
plexity requires the automatic inference of multiple interacting
variables (Koblinger et al., 2021)—many of which can serve
as proxies depending on the decision context; second, com-
plex probabilistic inference must rely on approximations to re-
main tractable; and third, most of the biologically plausible ap-
proximation mechanisms unfold over time. This time depen-
dence leads to a fundamental prediction: the quality of the
probabilistic approximation improves over time, making the
subjective uncertainty of the observers increasingly predictive
of their behavioral accuracy (Lengyel, Koblinger, Popovi¢, &
Fiser, 2015). We refer to this measurable behavioral signature
as the calibration of uncertainty. While most process-level per-
ceptual models predict improved accuracy over time, a corre-
sponding improvement in calibration is specific to probabilistic
methods.

Our framework also incorporates the possibility of proxy-
based shortcuts, which provide rapid —nearly instantaneous —
uncertainty estimates based on crude point estimates of the
complex model’s proxy variables available early in their auto-
matic inference. Crucially, the degree to which behavior relies
on proxies depends on two factors: the reliability of the prox-
ies and the quality of the probabilistic inference of the primary
variable —the latter improving with time.

Model simulations

We simulated behavior in a hypothetical orientation estima-
tion task using stimuli of varying contrast, modeling perception
and behavioral judgments as separate processes (Fig. 1A).
Orientation perception was implemented using a probabilis-
tic sampling algorithm—a temporally unfolding process that
approximates probability distributions via histograms of ac-
cumulated representative samples (Fiser, Berkes, Orban, &
Lengyel, 2010). An ideal observer then converted these his-
tograms into orientation estimates and uncertainty judgments
(Fig.1A, arrow 1), with the latter potentially informed by the ob-
served contrast (stimulus strength), which served as a proxy
for uncertainty (Fig. 1A, arrow 2).

We ran simulations to test the time-dependence (sam-



ple size-dependence) of uncertainty calibration (Fig. 1B),
quantified as the slope of best-fitting lines through uncer-
tainty—accuracy pairs (with accuracy being the average cosine
error), measured at fixed contrast levels. A slope of 45° in-
dicates perfect calibration; a vertical line reflects none. We
compared three model variants: one estimating uncertainty
from perceptual samples alone (sampling-only), one using
only the crude proxies (proxy-only), and a hybrid model com-
bining both sources. Only the sampling-only and hybrid mod-
els showed improvement in calibration with increasing sam-
ple size. At the single-sample limit (brightest purple lines), the
sampling-only model was uncalibrated, while the hybrid model
was already calibrated by leveraging proxy information, which
it further refined as more samples became available.
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Figure 1: A. Overview of the modeling framework. B. Sim-
ulated calibration as a function of sample size, quantified
as the slope of best-fitting lines (purple lines) through accu-
racy—certainty pairs (red dots) computed at different stimulus
strengths.

Experimental results

To assess the nature of human perceptual uncertainty repre-
sentation, we compared simulation outcomes to human data
collected in a novel orientation estimation task (Fig. 2A). In
each trial, participants briefly viewed a complex stimulus con-
sisting of multiple randomly oriented items (line segments,
N=6; or Gabor patches, N=4) of varying contrast. After the
stimulus disappeared, a single target item was cued, and par-
ticipants simultaneously reported its perceived orientation and
their subjective uncertainty about the reliability of their per-
cept. The quality of the hypothesized approximate inference
was manipulated via presentation time, and stimulus strength
through set size (number of items) and target contrast.
Because stimulus strength in the experiment was influ-
enced by two independent proxies —unlike in the simulations —
we adapted our calibration analysis. Accuracy and uncertainty

were computed separately for each unique stimulus, defined
by the combination of presentation time, contrast, and set size
(Fig. 2B, top row, purple points). To assess time-dependent
changes in calibration, best-fitting lines were computed for
data points sharing the same presentation time (Fig. 2B, top
row, purple lines), and the resulting slopes were plotted as a
function of presentation time (Fig. 2B, bottom row).

In the line-segment experiment (Fig. 2B, left side), calibra-
tion was already high at the shortest presentation time and
showed no significant improvement with additional time (rm
ANOVA: F(3, 15) = 1.56, p = 0.241). To test whether this lack
of change reflected a ceiling effect, we repeated the exper-
iment replacing line segments with more ambiguous Gabor
patches and reduced the shortest presentation time from 50
to 33 ms (Fig. 2B, right side). While calibration was still rela-
tively strong at brief durations, this modified version revealed
a gradual and now significant improvement with time (F(3, 9)
= 12.43, p = 0.0015). This improvement is a hallmark of ap-
proximate probabilistic computation, while the strong calibra-
tion at short durations suggests that participants may either
access multiple samples early on or rely on proxies to support
inference. Together, these results support the probabilistic ac-
count of perception and align with a hybrid inference strategy
that integrates proxy-based information.
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Figure 2: A. Trial sequence and behavioral reports (inset).
B. Empirical time course of uncertainty calibration (darker pur-
ple indicates longer presentation times). Data points and fitted
lines are averaged across participants for display.

Discussion

This work addresses the under-explored question of how the
brain implements efficient inference under naturalistic con-
straints. By introducing a novel method for identifying behav-
ioral signatures of the underlying computation, we provide ev-



idence that 1) the brain engages in approximate probabilistic
inference, and 2) due to the temporarily evolving nature of this
inference and reliance on a complex internal model, features
are mimicking heuristic computation naturally emerge during
such inferences. Our results show that behavior is consis-
tent with inference over complex internal models, in which the
brain may leverage proxy-based shortcuts to estimate uncer-
tainty —enabling a flexible hybrid strategy that balances speed
and accuracy.
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