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Abstract
Large-scale human brain networks exhibit complex
topological characteristics, likely reflecting a balance
among competing objectives such as minimizing
wiring cost and maximizing communication efficiency.
Interestingly, computational modelling has suggested
that the connectivity of the brain is biased towards
enhanced communication rather than a minimized wiring
cost. Yet, the relationship between such communication
efficiency and the functional capacity of the brain, e.g.,
to solve computational problems, remains unclear. To
address this question, we used a game-theoretical
framework in which individual brain regions establish
connections only if it improves their signalling efficiency,
given the wiring cost. We show that, firstly, complex
network architectures naturally emerge from these
local interactions, capturing some hallmarks of the
brain. Secondly, resulting networks have both superior
communication and reduced wiring cost compared
to empirical brain networks. However, these optimal
networks exhibited diminished memory capacity relative
to empirical networks. Our findings suggest that
efficient communication does not necessarily translate
to improved computation. Instead, functional capacity
may have played an essential role in shaping brain
network architecture, potentially even at the expense of
communication efficiency.
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Introduction
The architecture of the human brain is highly organized,
incorporating interconnected clusters, functional hierarchies,
influential hubs, and selective shortcuts among those hubs
[Sporns et al., 2004]. A key driver of this organization
is the wiring cost, since the brain is confined within
the skull and maintaining connections is metabolically
expensive [Chklovskii et al., 2002]. Another contributing
factor is communication efficiency that is conventionally
captured via the shortest path distance between regions.
Computational modelling suggests the brain may have
prioritized communication efficiency over strict wiring
cost minimization, leading to sub-optimal wiring patterns
[Kaiser and Hilgetag, 2006, Hayward et al., 2023]. Although
this communication-centric configuration is well-supported,
its implications for the brain’s computational capacity remain
largely unexplored. Recent studies instantiating recurrent
neural networks (RNNs) and echo state networks (ESN)
from the brain’s architecture show that these networks
achieve a performance on par with randomly wired
networks, at best [Damicelli et al., 2022, Goulas et al., 2021,
Hadaeghi et al., 2024, Suárez et al., 2021]. These
paradoxical findings prompt two questions: “Is
communication in brain networks, in fact, optimal?”
and subsequently, “If it is, does enhanced communication

promote better computational capacity?” We address both
questions using a game-theoretical framework, combined
with generative modelling, to construct networks with both
optimal communication and minimal wiring cost.

Methods
Empirical brain networks were based on diffusion spectrum
imaging data from 70 healthy adults (average age 28.8
years), comprising 114 cortical regions defined by the
Cammoun atlas [Cammoun et al., 2012]. Null networks
(randomised and latticised) were generated by rewiring
the empirical connectomes while preserving the degree
distribution and network density [Rubinov and Sporns, 2011].
In our generative model, brain regions connect only if doing
so increases their influence over other regions. Specifically,
each region aims to maximize its own communication
efficiency while minimizing its wiring cost. This contrasts
with previous approaches that either rely on predefined
wiring rules [Vértes et al., 2012] or globally optimise the entire
network [Avena-Koenigsberger et al., 2014]. We modelled
communication using three signalling modes: routing,
propagation, and diffusion. Routing assumes signalling
occurs strictly along the shortest path; propagation allows
recruitment of parallel pathways, penalizing longer routes;
diffusion models information as random walkers traversing the
network [Seguin et al., 2023]. Additionally, as an alternative
to signalling, we included homophily, where regions
connect to expand their local clusters [Akarca et al., 2021,
Vértes et al., 2012]. The model started from the three-
dimensional embedding of the brain regions as nodes,
connected minimally following a ring topology, and evolved
over T = 5000 iterations. At each step, N = 16 nodes
were randomly selected to “play”. Edges among these nodes
were flipped (connected nodes disconnected, and vice versa;
Fig. 1, left panel). Players compared their new payoff to
their previous state and retained new connections only if their
payoff improved. The payoff function was defined as:
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the normalized Euclidean
distance, and A the binary adjacency matrix. The trade-off
parameter α was fine-tuned so generated networks matched
empirical network densities. The final 70 networks from
each model were used as representative instances once
evolution reached steady-state. Similarity with empirical brain
networks was quantified using portrait divergence, a measure
that takes both local and global characteristics of networks
into account [Luppi et al., 2024, Bagrow and Bollt, 2019], with
smaller values corresponding to “more similar” and vice
versa. The functional repertoire of networks was assessed
by treating them as ESNs, solving a memory capacity (MC)
task [Damicelli et al., 2022].
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Figure 1: Visual summary of the modelling framework, trajectory of the game, and characteristics of all networks.

Results and Discussion

Brain-like network architecture emerges from
competitive local interactions

The middle panel of Fig. 1 demonstrates that optimal networks
surpass empirical brain networks, moving towards the Pareto
fronts of the optimization space. However, portrait divergence
between simulated and empirical brain networks (Fig. 1,
right panel) indicates that brain-like organization naturally
arises when regions maximize influence under diffusion and
propagation regimes. This aligns with prior evidence showing,
in addition to the shortest path, brain regions utilize longer
parallel pathways to optimize signalling [Fakhar et al., 2024,
Griffa et al., 2023]. Optimizing for routing communication
created precisely located shortcuts, steering the network
architecture towards randomness instead. Maximizing
homophily led to dense local clustering around regional hubs.
Inter-individual differences among empirical connectivity
patterns were captured by comparing portrait divergence of
each subject’s network with a consensus network derived from
all 70 networks, following [Betzel et al., 2019].

Human brains exhibit sub-optimal communication
and wiring economy but enhanced memory capacity

As Fig. 1 right panel shows, optimal networks tend
to have lower wiring costs and superior communication
efficiency. Compared to null models, optimal networks broadly
maintained random-network-level communication efficiency
but at significantly reduced wiring cost. Together, these
findings reveal that the current configuration of the human
brain is sub-optimal in both wiring cost and communication
efficiency. Yet despite this suboptimal cost-efficiency trade-
off, empirical brain networks displayed the greatest functional
repertoire (memory capacity), followed by networks optimized
for propagation efficiency. Although networks optimized for
diffusive dynamics were most topologically similar to the
brain, both these and those optimized for routing dynamics
exhibited markedly lower functional capacities. This suggests

the additional wiring cost observed in empirical brain networks
likely results from a third objective: maximizing functional
capacity [Gilson et al., 2020, Achterberg et al., 2023].

In summary, our findings indicate brain networks are
wired, not only to enhance communication and minimize
wiring cost, but also to expand their functional capabilities.
Balancing communication efficiency against wiring costs
appear as bottom-up outcomes, emerging naturally from local
interactions among regions. Conversely, expanding functional
capacity likely serves as a top-down constraint, shaping
network architecture beyond purely local interactions.
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