Attention rules Episodic Memory

Zahra Fayyaz (zahra.fayyaz@ini.rub.de)
Institute for Neural Computation, Computer Science Department, Universitatstr. 150
44801 Bochum, Germany

Sen Cheng (sen.cheng@ini.rub.de)
Institute for Neural Computation, Computer Science Department, Universitatstr. 150
44801 Bochum, Germany

Laurenz Wiskott (laurenz.wiskott@ini.rub.de)
Institute for Neural Computation, Computer Science Department, Universitatstr. 150
44801 Bochum, Germany



Abstract

Attention plays a crucial role in memory and learning by
prioritizing relevant information and filtering out redun-
dant input. This study explores how attention, guided
by semantic memory, enhances memory encoding and
retrieval. We present a neural network model to simu-
late generative episodic memory, comprising a VQ-VAE
encoder, an attention module, and a transformer-based
semantic decoder. Three attention strategies (random,
selective, and additive) were evaluated. Random atten-
tion, lacking prioritization, led to lowest memory accu-
racy. Selective attention, informed by semantic predic-
tion, improved performance by focusing on novel, infor-
mative inputs. Additive attention, inspired by biological
saccades, offered the highest performance through iter-
ative, predictive refinement of input encoding, albeit at
a higher computational cost. Furthermore, experiments
on both MNIST and ImageNet datasets demonstrate that
semantically-guided attention leads to more structured
and less prototypical memory traces. These findings
underscore the dynamic interplay between attention and
memory, suggesting that attentional mechanisms shaped
by prior knowledge significantly optimize learning and
memory.
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Introduction

Attention is a cornerstone of cognitive processes, playing a
pivotal role in how we perceive, process, and interact with
the world. As a mechanism for selectively focusing mental
resources, attention ensures that relevant information is pri-
oritized while extraneous details are filtered out. This selec-
tive focus is essential for managing the overwhelming influx
of sensory inputs and is critical for higher-order functions like
decision-making, learning, and memory (Lindsay et al., 2020).
Memory, as both a repository and a process, is deeply in-
tertwined with attentional mechanisms (Aly & Turk-Browne,
2017; Cowan et al., 2024). Decades of research have shown
that attention enhances the encoding of information, bolsters
its retention, and facilitates its retrieval.

An often overlooked aspect of this dynamics is the influ-
ence of semantic memory — the repository of general knowl-
edge and facts — on attention. Prior knowledge serves as
a guide to direct attention toward the most relevant aspects
of an environment and suppress predictable or redundant in-
put. Attention not only optimizes memory storage by reducing
the cognitive load of processing familiar information but also
enables more efficient memory by emphasizing novel, infor-
mative data.

This paper argues that effective attention patterns, shaped
by prior knowledge, enhance memory outcomes by reducing
the need to store predictable inputs. By exploring the inter-
play between attention, memory, and prior knowledge, we aim
to shed light on the cognitive and computational mechanisms
that underlie efficient memory.

Methods and Results

We use a neural network to model the encoding and retrieval
of episodic memory as a generative process. Our network
consists of (i) an encoder module (encoder part of a vector-
quantized variational autoencoder (VQ-VAE)) modeling the vi-
sual system, which compresses an input image into a more
abstract representation, (ii) an attention module that masks
out the irrelevant parts of this latent representation and stores
the attended part as a memory trace, and (iii) a decoder mod-
ule, which performs semantic completion using a bidirectional
transformer network on the memory trace and then decodes
it through the VQ-VAE decoder to reconstruct the memory.

VQ-VAE and transformer models are high-level abstrac-
tions that omit many biological details and provide a useful
computational perspective for our modeling and discussion.
The VQ-VAE encoder parallels the feedforward processing of
the visual systemtransforming raw inputs into abstract repre-
sentations, reminiscent of object encoding in the inferior tem-
poral cortex (Yamins et al., 2014; Kuzovkin et al., 2018; Lind-
say, 2021). The decoder mimics top-down feedback that re-
constructs visual information during recall (Xia et al., 2015;
Takeda, 2019; Al-Tahan & Mohsenzadeh, 2021). This is a
process we use for visualization rather than as a literal map-
ping of neural reactivation. Meanwhile, the transformer learns
the statistical relationships among the VQ-VAE’s latent vec-
tors, analogous to how the brain acquires semantic informa-
tion from repeated experiences (Michaelian, 2011) and can
fill in missing elements in a semantically consistent manner
(Tang et al., 2018; Carrillo-Reid & Yuste, 2020). for more in-
formation about the biological significance of the base model
see Fayyaz et al. (2022) and Reyhanian et al. (2024).

To guide attention in a principled and context-sensitive
manner, we use the predictions of the last layer of the trans-
former just before they are converted into probabilities of dif-
ferent features using the softmax function.These scores are
known as logits. We show that these logits are a good proxy
for the model’s internal confidence in its predictions. Specif-
ically, lower logit values — ususally corresponding to more
evenly distributed softmax probabilities — were interpreted as
indicators of higher epistemic uncertainty. This uncertainty
signal is used to select the parts of the input the model was
least confident about, prioritizing information that was harder
for the model to predict and, therefore, more informative.

As a stimulus set we constructed a dataset of two-digit
numerals by concatenating images from the MNIST dataset
(Fayyaz et al., 2025). The model was trained exclusively on
numerals divisible by three, adhering to specific digit pairing
rules. Training was conducted in a self-supervised manner
without access to explicit digit labels. To evaluate the model’'s
performance, we employed a supervised convolutional neural
network classifier trained on the original MNIST dataset. This
approach allowed us to measure the accuracy of digit recog-
nition on the reconstructed numerals for the three different at-
tention methods. We tested on both congruent (divisible by
three) and incongruent (not divisible by three, i.e., out of distri-



bution) to assess the effect of existing or violation of relevant
semantic knowledge on memory performance.

In random attention, which is our baseline, the attention is
distributed randomly across image representation, which led
to low overall memory retrieval accuracy for all different atten-
tion levels (Fig. 1). The lack of prioritization meant that both
predictable and unpredictable information is treated equally,
overloading cognitive resources and diluting the quality of en-
coded representations. In contrast, selective attention feeds
the entire encoded input into the semantic system and uses
the transformer’s logits to select the least predictable parts of
the input. This input-dependent filtering significantly enhances
memory accuracy by prioritizing informative parts and sup-
pressing predictable ones, resulting in more efficient memory
usage without incurring much extra computational cost. Ad-
ditive attention, modeled after biological saccades, processes
inputs one part at a time, allowing the semantic network to pre-
dict the next position that needs to be attended to. First, the
fully masked latent representation was passed to the trans-
former, and then the part(s) with the lowest logit(s) were at-
tended to. This process was repeated multiple times until the
intended masking level was reached. While this strategy was
more time-consuming, it achieved the highest accuracy for a
given level of attention.

Attentional mechanisms guided by prior knowledge help op-
timize memory even with limited attention. This effect is espe-
cially pronounced for incongruent data (Fig. 1b), suggesting
that optimized attention focuses on the most informative fea-
tures, particularly when semantic predictions are unreliable.
Generally, congruent cases show lower classification error,
with the gap being largest for the random baseline. In con-
trast, selective and additive attention store key anchoring fea-
tures that support accurate reconstruction, even when seman-
tic cues are misleading. This reflects a competition between
memory traces and semantic priors: when memory provides
strong evidence for a specific digit, it can override the bias
toward congruent interpretations. Consequently, we expect
memories from selective and additive attention to show lower
prototypicality -that is, they will be less similar to an average
or generalized class representation-, indicating that the model
retains distinct, task-relevant features of each stimulus.

Furthermore, tracking attention dynamics throughout train-
ing revealed a progressive refinement of attentional filters: ini-
tially diffuse, attention became increasingly precise as net-
work accumulated semantic knowledge. This shift under-
scores the iterative interplay between learning semantics and
attention, where learning continually reshapes attentional pri-
orities to optimize future encoding.

We initially used the MNIST stimuli to study these differ-
ent attention mechanisms and then repeated the same ex-
periments with the ImageNet dataset in a much larger net-
work. While the effects were more pronounced with simpler
MNIST inputs, the attention-driven improvements persisted in
the more complex ImageNet dataset, illustrating the robust-
ness of the attention-memory interaction across varying input
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Figure 1: Classification error of the outputs for different masking lev-
els using three attention methods for the double digit MNIST test data
that was congruent (1a) with the training data and out of distribution
data that is incongruent with the training data (1b)

complexities.

Conclusion and Future Work

This study demonstrates that attention, guided by semantic
information, significantly enhances the encoding and retrieval
of episodic memory. Additive attention achieved the highest
retrieval accuracy by iteratively refining memory representa-
tions, while selective attention offered substantial gains with
lower computational demands. These findings highlight the
role of attention as an active, knowledge-driven mechanism
that optimizes learning efficiency and memory formation.

In the future, we will further investigate how attention can
enhance the training process. Specifically, we will explore the
use of learned attention to inform data sampling, curriculum
learning, and uncertainty-aware training strategies. Although
the current results are not yet finalized, we anticipate that in-
tegrating these dynamic attention mechanisms into the train-
ing process will improve generalization and learning efficiency,
particularly in complex or data-scarce environments.
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