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Abstract
Episodic memory is highly malleable and shaped by so-
cial interactions. Rather than storing exact representa-
tions, it reconstructs incomplete traces using seman-
tic information influenced by motivation and context. In
shared reality situations, as shown by the saying-is-
believing (SIB) paradigm, verbalizing information affects
both audience perception and the speaker’s memory. Yet,
most computational models assume faithful storage and
neglect social influence. We have developed a genera-
tive episodic memory model combining a VQ-VAE for vi-
sual perception, a masking module for attention and hip-
pocampal storage, and a transformer for semantic com-
pletion. Images are encoded, partially stored, and later
reconstructed into plausible, not necessarily accurate,
scenarios. The model introduces key innovations: blend-
ing multiple memory traces, incorporating emotional va-
lence and biased reconstruction, and handling ambigu-
ous stimuli. These features allow it to simulate SIB effects
and social influences on memory, offering insights into
how communication and context shape what and how we
remember.

Keywords: generative episodic memory; saying is believing;
shared reality; non-shared reality; episodic memory; memory
trace; semantic memory.

Introduction
Episodic memory is not a static repository of past events
(Bartlett, 1932) but an inherently generative process that re-
constructs memories from incomplete traces completed by se-
mantic information (Fayyaz et al., 2022). This allows filling
in details, making inferences, and modifying recollections as
perspectives evolve (Cheng, 2024), a view supported by cog-
nitive psychology (Neisser, 1967). Studies on misinformation
and false memories show how external suggestions and inter-
nal biases reshape memory, underscoring its adaptive, mal-
leable nature (Loftus & Pickrell, 1995; Loftus, 2005). Con-
structive memory’s role in social bonding is well-documented.
Remembering can connect speaker and listener (Schacter,
2012; Hirst & Echterhoff, 2018), and unreliable memories
support joint recollections that form shared representations
(Hirst & Echterhoff, 2012), shared reality (Echterhoff, Hig-
gins, & Levine, 2009), collective memory (Brown, Kouri, &
Hirst, 2012), and social identity (Hirst & Rajaram, 2014).
The saying-is-believing (SIB) paradigm (Higgins & Rholes,
1978; Echterhoff, Higgins, & Groll, 2005) demonstrates that
articulating information alters the speaker’s memory and at-
titudes. Shared reality research shows that striving for mu-
tual understanding modifies memory to align with socially en-
dorsed views (Echterhoff et al., 2009; Echterhoff & Higgins,
2017). Yet, computational models rarely address these so-
cial effects, focusing on individual cognition and neglecting
communication-memory interactions. Generative models of-
fer a promising path forward. We replicate audience tuning
effects (Echterhoff, Higgins, Kopietz, & Groll, 2008) using a

generative episodic memory model (Fayyaz et al., 2022) that
forms and reconstructs traces (Cheng, 2024; Werning, 2020).
It stores incomplete aspects of episodes, which are seman-
tically completed during recall. It uses a Vector-Quantized
Variational Autoencoder (VQ-VAE) (van den Oord, Vinyals, &
kavukcuoglu, 2017) for compression and a BERT-based trans-
former (Devlin, Chang, Lee, & Toutanova, 2019) for seman-
tic reconstruction, generating coherent images from partial
traces. We extend this model by integrating multiple traces
to reflect social blending, incorporating emotional valence via
classifier and transformer biasing, and handling ambiguous
stimuli to capture real-world complexity. With these improve-
ments we simulate the SIB effect and provide a computational
account of how verbalization and social context shape mem-
ory.

Methods and Results

The generative episodic memory model functions through a
series of neural network-based steps: an input image is trans-
formed by a VQ-VAE encoder into a latent array of convolu-
tional feature vectors, which are then quantized into a percep-
tual index matrix zq via codebook vector indices. A random
subset of these indices is selected and stored as a memory
trace using a mask that discards a fixed percentage, model-
ing incomplete storage due to limited cognitive resources. In
parallel, the image is classified into one of ten classes, pro-
viding an evaluative judgment that biases later reconstruction.
During recall, the incomplete masked trace is completed by
a transformer. The transformer is trained on partially masked
MNIST images and conditioned on audience judgments to re-
produce the codebook vector indices, which are later decoded
via the VQ-VAE decoder into a reconstructed image. This
models biased generative memory and produces a remem-
bered scenario, which can again be evaluated for valence.
Although VQ-VAE and transformer models are high-level ab-
stractions that do not capture every biological detail, they offer
the right level of abstraction for our purposes. The VQ-VAE
encoder mirrors feedforward visual processing, similar to the
transformation of visual input into abstract object representa-
tions in the inferior temporal cortex (Yamins et al., 2014; Ku-
zovkin et al., 2018; Lindsay, 2021). The decoder reverses en-
coding, analogous to top-down feedback reconstructing corti-
cal memory patterns (Xia, Guan, & Sheinberg, 2015; Takeda,
2019). The generated images visualize memory and do not
imply literal reactivation in early visual areas. The transformer
learns statistical relations among VQ-VAE features, allowing
“filling in” gaps like higher cortical areas do (Tang et al., 2018;
Carrillo-Reid & Yuste, 2020). Our model aligns with hippocam-
pal indexing theory (Teyler & DiScenna, 1986), where code-
book vectors connect to full features via indices. We extend
this to propose that the hippocampus stores partial represen-
tations, emphasizing reconstruction over storage. Attention is
modeled as random selection to simulate incomplete encod-
ing; future versions will include input-dependent attention to
better align with empirical findings. The experimental setup



we are here replicating with an extended version of the base
model follows the saying-is-believing (SIB) paradigm (Higgins
& Rholes, 1978; Echterhoff et al., 2005, 2008), where partici-
pants read an ambiguous text about a target person. The text
was evaluatively ambiguous, containing several behavioral de-
scriptions of the target person that could be interpreted in ei-
ther a positive or a negative way. They were then asked to
describe him to an audience whose attitude toward the tar-
get person was already known to them (positive/negative). In
shared reality conditions, the participants had an epistemic
trust in the audience’s judgment and described the target so
the audience could identify him. In non-shared reality con-
ditions, the participants did not consider the audience’s judg-
ment to be reliable or credible and message production served
other goals (e.g., politeness or incentives). After a distraction
task, participants recalled the original text. Produced mes-
sages and recalls were blindly rated for valence on a -5 to +5
scale; the difference between audience conditions indicated
the SIB effect. In place of ambiguous texts used in the exper-
imental setup, we generate ambiguous images using a VAE
trained on MNIST (LeCun, Cortes, & Burgess, 2012). It en-
codes images into a 2D Gaussian latent space; nearby points
represent similar digits, and transitions between classes pro-
duce ambiguous samples. To quantify ambiguity, we use a
10-class Softmax classifier: images with close probabilities
for two digits (e.g., 0.5 for ”3”, 0.4 for ”8”) are ambiguous.
These define strong and weak labels, mapped to positive and
negative judgments. Figure 1 compares simulation results
(bottom) with experimental results (top) in terms of valence.
Experimental findings (Echterhoff et al., 2008; Wagner, Hig-
gins, Axmacher, & Echterhoff, 2024) show message valence
depends on audience tuning and intrinsic tone. Communi-
cators align messages with audience judgment more during
message production than during recall. In non-shared reality,
tuning is stronger during messaging but weaker at recall, due
to conscious alignment fading over time. Control experiments
(not shown) confirm that without transformer biasing, valence
for ambiguous stimuli stays near zero, demonstrating that bi-
asing is essential to reproduce observed behavior.

Conclusion and Future Work

Our study introduces a computational model for the effect of
social interaction on a communicator’s episodic memory. In-
tegrating valence, biased recall, and multiple memory traces,
the model operates on ambiguous stimuli, captures social ef-
fects on memory, and reproduces key experimental findings.
During message production, the communicator aligns mes-
sages with audience attitudes, leading to memories shaped by
communicated bias—an audience-congruent shift illustrating
the saying-is-believing effect under shared reality (Echterhoff
et al., 2005, 2008, 2009). While the model captures this effect
already, distinguishing audience-driven changes (modeled by
bias) from self-directed processes (modeled by weighting
combined memory traces), as in multiple trace theory, could
yield deeper insights. This work fills a critical gap by integrat-

Figure 1: Simulation in comparison to experimental results.

ing communication effects into a single computational frame-
work and lays the foundation for studying the interplay be-
tween social influence, motivation, and memory—being, to
our knowledge, the first model to do so. Our modeling sug-
gests refinements for future experiments: assessing commu-
nicator judgment before message production to quantify bias;
comparing final messages to both original input and output to
track false vs. accurate recall; and disentangling the influence
of masking level and judgment bias in reconstruction. Since
behavioral data reflect only final outcomes, it remains unclear
whether memory changes stem from fading details or judg-
ment shifts, or whether ambiguity intensifies or resolves over
time. Next steps include applying the model to broader data,
incorporating reaction times as indicators of cognitive acces-
sibility (Wagner et al., 2024), and using naturalistic stimuli.
While MNIST was suitable for initial validation, it lacks real-
world complexity. Given the challenge of sourcing naturally
ambiguous data, we plan to test the model on richer inputs. A
variant has already been implemented with ImageNet-scale
input (Reyhanian, Fayyaz, & Wiskott, 2024), demonstrating
scalability to complex domains.
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