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Abstract
Recent advances in EEG-based visual decoding utilize
diffusion models to generate realistic images from neu-
ral activity. Typically, these methods project EEG sig-
nals into latent spaces–most commonly, Contrastive
Language–Image Pretraining (CLIP)–which define visu-
osemantic features for subsequent image reconstruc-
tion. Prior methods rely on deep and opaque mod-
els, overlooking the neural origins of decoded informa-
tion. Here, we introduce Perceptogram, a unified, inter-
pretable framework that uses paired linear mappings be-
tween EEG signals and CLIP latents, leveraging CLIP’s in-
herent structure. Perceptogram achieves state-of-the-art
reconstruction quality and generates latent-filtered EEG
maps, isolating neural activity relevant to specific visual
attributes. These maps reveal clear spatiotemporal orga-
nization: ≈ 100 ms post-stimulus, lateral posterior nega-
tivity encodes smooth textures and blue hues, while me-
dial negativity captures textured images, red hues, and
food semantics; ≈ 180 ms, lateral negativity signals ani-
mate objects. By identifying these distinct neural signa-
tures, Perceptogram transparently delineates how visual
features—from basic textures and colors to high-level ob-
ject categories—are temporally and spatially represented
in the brain 1.
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Approach
Our approach goes beyond reconstructing images from
EEG—it identifies and explains which neural signals drive
decoding. We do this in two ways: 1. Test-time Pertur-
bation: We systematically modify EEG signals (e.g., swap-
ping electrodes or time segments) to see how reconstruc-
tions change. 2. Decoding-Encoding Loop: EEG signals
are linearly mapped into CLIP’s latent space and then back
to EEG. This process filters EEG signals, isolating electrodes
and time points carrying visual meaning. The resulting pat-
terns (“latent-filtered EEG”) are directly interpretable and sim-
ilar to common spatial patterns used in BCI Blankertz et al.
(2008). We further extend this decoding–encoding approach
to low-level features such as color and texture by leveraging
other latent spaces, revealing their distinct neural signatures.

Datasets: We used the publicly available THINGS-EEG2
(Gifford et al., 2022) and Natural Scenes Dataset (NSD) (Allen
et al., 2022) for EEG and fMRI analyses, respectively, to vali-
date findings from our EEG analysis.

1This is a brief version of the Arxiv paper Fei et al. (2024)

Figure 1: Reconstructed (recon) examples of different quali-
ties. GT is ground truth.

Ground
Truth

CLIP

PCA

ICA

VDVAE

Figure 2: Reconstructions from different latent spaces

Results & Significance
Table 1 demonstrates state-of-the-art reconstruction perfor-
mance, despite learning only a simple linear map. Recon-
structions of varying quality are shown in Fig 1, and recon-
structions from different latent spaces captures various vi-
sual features, as shown in Fig 2. Temporal perturbation ex-
periments shown in Fig 3a illustrate later representation of
semantic information relative to lower-level visual features.
Electrode mirroring results in Fig 3b reveal interesting se-
mantic changes. EEG’s temporal resolution enables gener-
ation of novel spatiotemporal maps (Fig 3c) representing var-
ious visual features that spatially agree with those obtained
from fMRI (Fig 3d). Overall our results challenge the idea
that EEG-based visual decoding requires deep, nonlinear and
non-interpretable models.



Table 1: Quantitative assessments of the reconstruction quality for EEG and MEG.

Dataset PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Inception ↑ CLIP ↑ EffNet ↓ SwAV ↓

THINGS-MEG (BrainDecoding) Benchetrit et al. (2024) 0.088 0.333 0.747 0.855 0.712 0.804 - 0.576
THINGS-MEG (Perceptogram with unCLIP) 0.187± .004 0.376±0.007 0.848±0.036 0.906±0.031 0.748±0.032 0.826±0.027 0.875±0.021 0.527±0.021

THINGS-EEG2 (ATM-S) Li et al. (2024) - 0.345 0.776 0.866 0.734 0.786 - 0.582
THINGS-EEG2 (Perceptogram with Versatile Diffusion) 0.267± .015 0.347±0.003 0.910±0.010 0.927±0.005 0.752±0.008 0.807±0.009 0.877±0.004 0.540±0.004
THINGS-EEG2 (Perceptogram with unCLIP) 0.223± .029 0.37±0.005 0.875±0.013 0.915±0.008 0.749±0.024 0.806±0.016 0.87±0.011 0.530±0.009

(a) Time-Swapping. Each reconstructed image has a horizontal color bar showing when and how much EEG data was swapped between the
two image classes. The gopher reconstruction appears darker when EEG segments from 40–320 ms are swapped with gorilla EEG, and the
gorilla appears lighter when the same range is replaced with gopher EEG. In the cat-sausage swap, the cat takes on a food-like appearance
when EEG from 240–280 ms is replaced with sausage EEG, and the sausage looks more animal-like when EEG from 200–360 ms is replaced
with cat EEG.

(b) Electrode-Mirroring. Mirror All: Electrode locations mir-
rored about the midline during test time Mirror O1 & O2: O1
and O2 are swapped during test time. In the ”Mirror-all” con-
dition, we found that many images reversed their animacy.
For example, cheetah, seagull, panther, and robot all
produced non-living objects. Conversely, balance beam and
sandpaper produced mirrored reconstructions that look like
living creatures.

(c) Average latent-filtered EEG patterns (10 subjects). For PCA, red indicates
stronger positive polarity; blue indicates stronger negative polarity. For ICA,
VDVAE, and CLIP, stronger color indicates stronger negative polarity.

(d) Cross-subject EEG–fMRI alignment. The increased fMRI signal (red) corresponds to increased EEG signal represented by the darker
category-specific color.
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