Perceptogram: Interpreting Visual Percepts from EEG
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Abstract

Recent advances in EEG-based visual decoding utilize
diffusion models to generate realistic images from neu-
ral activity. Typically, these methods project EEG sig-
nals into latent spaces—most commonly, Contrastive
Language-Image Pretraining (CLIP)-which define visu-
osemantic features for subsequent image reconstruc-
tion. Prior methods rely on deep and opaque mod-
els, overlooking the neural origins of decoded informa-
tion. Here, we introduce Perceptogram, a unified, inter-
pretable framework that uses paired linear mappings be-
tween EEG signals and CLIP latents, leveraging CLIP’s in-
herent structure. Perceptogram achieves state-of-the-art
reconstruction quality and generates latent-filtered EEG
maps, isolating neural activity relevant to specific visual
attributes. These maps reveal clear spatiotemporal orga-
nization: ~ 100 ms post-stimulus, lateral posterior nega-
tivity encodes smooth textures and blue hues, while me-
dial negativity captures textured images, red hues, and
food semantics; ~ 180 ms, lateral negativity signals ani-
mate objects. By identifying these distinct neural signa-
tures, Perceptogram transparently delineates how visual
features—from basic textures and colors to high-level ob-
ject categories—are temporally and spatially represented
in the brain '.
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Approach

Our approach goes beyond reconstructing images from
EEG—it identifies and explains which neural signals drive
decoding. We do this in two ways: 1. Test-time Pertur-
bation: We systematically modify EEG signals (e.g., swap-
ping electrodes or time segments) to see how reconstruc-
tions change. 2. Decoding-Encoding Loop: EEG signals
are linearly mapped into CLIP’s latent space and then back
to EEG. This process filters EEG signals, isolating electrodes
and time points carrying visual meaning. The resulting pat-
terns (“latent-filtered EEG”) are directly interpretable and sim-
ilar to common spatial patterns used in BCI Blankertz et al.
(2008). We further extend this decoding—encoding approach
to low-level features such as color and texture by leveraging
other latent spaces, revealing their distinct neural signatures.

Datasets: We used the publicly available THINGS-EEG2
(Gifford et al., 2022) and Natural Scenes Dataset (NSD) (Allen
et al., 2022) for EEG and fMRI analyses, respectively, to vali-
date findings from our EEG analysis.
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Figure 1: Reconstructed (recon) examples of different quali-
ties. GT is ground truth.

Figure 2: Reconstructions from different latent spaces

Results & Significance

Table 1 demonstrates state-of-the-art reconstruction perfor-
mance, despite learning only a simple linear map. Recon-
structions of varying quality are shown in Fig 1, and recon-
structions from different latent spaces captures various vi-
sual features, as shown in Fig 2. Temporal perturbation ex-
periments shown in Fig 3a illustrate later representation of
semantic information relative to lower-level visual features.
Electrode mirroring results in Fig 3b reveal interesting se-
mantic changes. EEG’s temporal resolution enables gener-
ation of novel spatiotemporal maps (Fig 3c) representing var-
ious visual features that spatially agree with those obtained
from fMRI (Fig 3d). Overall our results challenge the idea
that EEG-based visual decoding requires deep, nonlinear and
non-interpretable models.



Table 1: Quantitative assessments of the reconstruction quality for EEG and MEG.

Dataset PixCorr 1 SSIM 1 AlexNet(2) AlexNet(5) T Inception 1 CLIP 1 EffNet | SwAV |
THINGS-MEG (BrainDecoding) Benchetrit et al. (2024) 0.088 0.333 0.747 0.855 0.712 0.804 - 0.576
THINGS-MEG (Perceptogram with unCLIP) 0.187£.004 0.376+0.007 0.848+0.036 0.906+0.031 0.748+0.032 0.826+0.027 0.875+0.021 0.527+0.021
THINGS-EEG2 (ATM-S) Li et al. (2024) - 0.345 0.776 0.866 0.734 0.786 - 0.582
THINGS-EEG2 (Perceptogram with Versatile Diffusion) 0.267+.015 0.347+£0.003 0.910+0.010 0.927+0.005 0.752+0.008 0.807+£0.009 0.877+0.004 0.540+0.004
THINGS-EEG2 (Perceptogram with unCLIP) 0.223+£.029 0.37+0.005 0.875+0.013 0.915+0.008 0.749+0.024 0.806+0.016 0.87+0.011  0.530=+=0.009
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(a) Time-Swapping. Each reconstructed image has a horizontal color bar showing when and how much EEG data was swapped between the
two image classes. The gopher reconstruction appears darker when EEG segments from 40-320 ms are swapped with gorilla EEG, and the
gorilla appears lighter when the same range is replaced with gopher EEG. In the cat-sausage swap, the cat takes on a food-like appearance
when EEG from 240-280 ms is replaced with sausage EEG, and the sausage looks more animal-like when EEG from 200-360 ms is replaced
with cat EEG.
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(b) Electrode-Mirroring. Mirror All: Electrode locations mir- 340 ms A v
rored about the midline during test time Mirror O1 & 02: O1 360 ms

and O2 are swapped during test time. In the "Mirror-all” con- 380 ms A y
dition, we found that many images reversed their animacy. 400 ms

For example, cheetah, seagull, panther, and robot all

produced non-living objects. Conversely, balance beam and
sandpaper produced mirrored reconstructions that look like
living creatures.
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(c) Average latent-filtered EEG patterns (10 subjects). For PCA, red indicates
stronger positive polarity; blue indicates stronger negative polarity. For ICA,
VDVAE, and CLIP, stronger color indicates stronger negative polarity.
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(d) Cross-subject EEG—fMRI alignment. The increased fMRI signal (red) corresponds to increased EEG signal represented by the darker

category-specific color.
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