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Abstract

Artificial neural networks (ANNs) have become increas-
ingly useful for modeling how the brain builds represen-
tations from the natural world, yet the nature of their rep-
resentational alignment with dynamic brain activity re-
mains underexplored. Here, we introduce an information-
theoretic framework to decompose representational ge-
ometries into redundant and synergistic components us-
ing partial information decomposition (PID). Combining
magnetoencephalography (MEG) recordings from par-
ticipants listening to natural sounds, and two sound-
processing ANNs with categorical (CatDNN) and con-
tinuous (SemDNN) semantic outputs, we analyze time-
varying brain-model alignment for two optimized stimulus
sets. For low-agreement stimulus sets, where mutual in-
formation between models is minimized, SemDNN reveals
higher mutual information with brain activity. PID fur-
ther shows greater redundancy and synergy for SemDNN,
suggesting sustained temporal integration of intermedi-
ate semantic features that can potentially afford a more
accurate readout of the auditory environment. These re-
sults highlight the value of representational decomposi-
tion for detailing shared and complementary components
of the alignment between brains and ANNs.
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Introduction

Understanding how artificial neural networks align with dy-
namic brain representations is a central question in compu-
tational neuroscience (Sucholutsky et al., 2023). While pre-
vious research showed that ANNs better predict cerebral and
behavioral responses to natural sounds (Giordano, Esposito,
Valente, & Formisano, 2023), these efforts have largely fo-
cused on static representations, leaving the temporal dynam-
ics of model-brain alignment underexplored. Furthermore, it
has also been shown that brain-model representational simi-
larity varies with the stimulus set (Araújo et al., 2024), motivat-
ing the use of optimized stimuli to better distinguish between
models. Crucially, recent findings reveal that redundant and
synergistic encoding serve distinct roles in brain function, with
synergy supporting distributed representations (Greco, Moser,
Preissl, & Siegel, 2024; Koçillari et al., 2023).

In this work, we introduce a novel information theoretic
framework to analyze the dynamic alignment between brain
activity and sound-processing ANNs by decomposing their
representational geometries into redundant and synergistic
components. Using sensor-level MEG responses to natural
sounds and two similar acoustic-to-semantic ANNs (categor-
ical and continuous semantic outputs), we investigate how
well these models can align with brain activity over time, and,
critically, how time-resolved cerebral representations interact
throughout sound listening.

Methods

Experimental design. Magnetoencephalography (MEG)
data were acquired from 21 participants as they listened to
natural sounds while performing a one-back repetition detec-
tion task. The stimulus set comprised 600 natural sounds (du-
ration = 2 s) where a common set of 150 sounds was shared
across all participants (Araújo et al., 2024), and the remaining
450 were split across three distinct 150 sound sets, each as-
signed to a separate subgroup of 7 participants (unique sets).
Each participant heard each sound 8 times throughout two
subsequent MEG sessions.
Artificial neural networks. Previous studies have com-
pared multiple sound-processing ANNs that vary in architec-
ture, size and training objectives, and found that many are
in hierarchical correspondence with cerebral representations
(Tuckute, Feather, Boebinger, & McDermott, 2023). Here,
in order to disentangle layer-specific representations in dy-
namic cerebral responses, we considered two nearly identical
acoustic-to-semantic deep neural network models (Esposito
et al., 2024). Both architectures were trained with the same
dataset and have the same backbone (4 convolutional blocks
and one global average pooling = layers 1-5), but one model
outputs probabilities of sound-event categories (CatDNN),
and the other a continuous Word2Vec semantic embedding
learned from sound (SemDNN).
Decomposing representational geometries. To decom-
pose how different models align with the brain’s dynamical
representations of natural sounds, we first computed repre-
sentational dissimilarity matrices (RDMs) (Figure 1.A, top).
For the preprocessed sensor-level MEG data (ICA correction;
high-pass at 0.05Hz, low-pass at 70Hz and notch at 50Hz), we
computed dissimilarities using cross-validated squared Maha-
lanobis distance across 306 sensors. A noise covariance ma-
trix was estimated using Ledoit-Wolf method on pre-stimulus
activity (Ledoit & Wolf, 2004). For the ANNs, we calculated
RDMs as the normalized squared Euclidean distance.

We then applied an information-theoretic framework, the
partial information decomposition (Williams & Beer, 2010), to
analyze the relationship between model representations at dif-
ferent latencies of the cerebral response. PID allow us to de-
compose the unique, redundant and synergistic contributions
to the total information that a set of source RDMs have about
a target representation (Figure 1.A, bottom). To estimate re-
dundancy (shared information) and synergy (combined infor-
mation) between representations, we employed minimum mu-
tual information PID (Barrett, 2015) alongside mutual informa-
tion estimation using a Gaussian copula estimator (Ince et al.,
2017).

We carried out two complementary analyses: 1) Mutual
information between the time-varying brain RDMs and the
different layer RDMs of each ANN. 2) Time-to-time PID using
two brain RDMs from different time points as sources and a
model layer RDM as target.



Figure 1: A) Analysis framework: for a given stimulus set, we compute brain (time-varying) and model RDMs (top). Partial
information decomposition divides the total information into unique, redundant and synergistic components (bottom). B) Brain-
model mutual information. C) Normalized redundant information for layer 3 of each model. D) Normalized synergistic information
for the same systems as D. Top and bottom rows in B, C and D, show low- and high-agreement stimuli sets, respectively.

Optimized stimuli. Following a previous approach
(Hosseini et al., 2024), we defined two types of opti-
mized stimulus subsets. For each unique set, combined with
the common set, we identified subsets of sounds that either
minimized or maximized the mutual information between
layer 3 RDMs of CatDNN and SemDNN, thereby defining
the low- and high-agreement sets, respectively. A total of 6
optimized sets, 2 per unique set. We selected layer 3 because
layer-wise brain-model mutual information differentiate at this
processing stage (results not shown).

Results

Brain-model mutual information. We computed layer-
wise brain-model mutual information for the low- and high-
agreement stimulus selections. Figure 1.B shows the
mean±SEM of the maximum mutual information across lay-
ers at each time point, averaged across participants, and for
two stimulus subset optimizations. For the low-agreement
set, SemDNN exhibited consistently higher mutual information
than CatDNN throughout sound listening. In contrast, both
models achieved comparable mutual information for the high-
agreement set, providing evidence for shared representational
axes.

Time-to-time partial information decomposition. Given a
target model representation, we computed time-to-time partial
information decomposition using two different brain RDMs as
sources. For each model’s layer 3, we averaged normalized
redundant and synergistic maps across participants and opti-
mized stimuli subsets (normalization by the total information).
Results show expected redundancy between brain represen-
tations along the diagonal for the first second for both models
and subsets (Figure 1.C). We observed an overall increase
in redundancy for SemDNN in the low-agreement set possi-
bly due to common encoded features that are highlighted be-

tween brain and layer 3 representations. In contrast, CatDNN
RDMs do not exhibit long-lasting redundant interactions for
this stimulus set. Figure 1.D shows an off-diagonal synergy
pattern between brain representations, with highest values for
SemDNN in the low-agreement set suggesting temporal inte-
gration of intermediate semantic features.

Conclusions

Overall, our analyses reveal a clear dominance of SemDNN
throughout the cerebral response compared to CatDNN. PID
further supports this distinction, showing that SemDNN exhib-
ited greater redundancy and synergy with brain representa-
tions in the low-agreement regime. These synergistic inter-
actions suggest that the integration of intermediate semantic
features across latencies of the cerebral response could po-
tentially afford a more accurate readout of the auditory envi-
ronment. However, further work using source-localized MEG
data with behavioral responses is needed to elucidate the na-
ture of these synergistic interactions and their functional rele-
vance. These results highlight the potential of decomposing
representational geometries using PID as a powerful frame-
work for disentangling shared and complementary contribu-
tions of neural and model representations.
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