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Abstract
The study of neural circuitry in visually-guided decision-
making has generated extensive research and theoretical
models of decision formation. However, the role of gaze
in enhancing focal sampling and facilitating shifts to sam-
ple alternatives remains unclear. We propose a closed-
loop model that integrates decision formation with gaze
signals to enhance the sampling of visual options. Vi-
sual input is first projected to decision populations, im-
plementing competition via mutual inhibition. The output
from these populations drives gaze populations, generat-
ing visual shifts that feedback into the decision process.
We present simulations based on a two-alternative bun-
dle task, showing that gaze and decision outputs align
with behavioral performance in terms of decision accu-
racy and gaze shift occurrences. The model can be ex-
tended to study the role of gaze in decision-making both
at behavioral and at neural levels, to test predictions such
as whether fewer gaze shifts correlate with shorter reac-
tion times, or if gaze shifts coincide with changes in neu-
ral value encoding. Additionally, the model can be applied
to explore whether gaze and decision align in sequential
alternative presentations or when distractors are present.

Keywords: Decision-making, Gaze-centered decisions, Pre-
frontal cortex, neural network models, neural encoding of value

Introduction
Decision-making is a fundamental cognitive process involv-
ing the integration of distributed information (Kristan, 2008)
at multiple levels (Cisek, 2012). Choice formation requires
the temporal integration of sensory evidence (Lin, Nie, Zhang,
Chen, & Yang, 2020) compared via mutual inhibition in neural
circuits (Levine & Leven, 1991; Wang, 2008; Koyama & Pu-
jala, 2018; Ballesta & Padoa-Schioppa, 2019; Roach, Church-
land, & Engel, 2023), primarily located in frontal brain regions
(Rushworth, Noonan, Boorman, Walton, & Behrens, 2011).

In visually-guided decisions, gaze enhances focal vision by
highlighting relevant information (Deubel & Schneider, 1996;
Shadlen, Kiani, Hanks, & Churchland, 2008; Hajnal et al.,
2024), enhancing the encoding of the value of visually sam-
pled options, and of choices performed via saccadic re-

sponses (McGinty, Rangel, & Newsome, 2016; Smith & Kra-
jbich, 2019; Ferro, Cash-Padgett, Wang, Hayden, & Moreno-
Bote, 2024). Previous theoretical work on gaze-centered
decision-making mainly focused on the feed-forward inter-
action between gaze position and value (Krajbich, Armel, &
Rangel, 2010; Hare, Schultz, Camerer, O’Doherty, & Rangel,
2011), using approaches based on stochastic drift diffusion of
decision signals (Usher & McClelland, 2001).

We propose a closed-loop model where decision formation,
driven by mutual inhibition between two choice-selective pop-
ulations, influences neural populations generating gaze sig-
nals modeled via bistable network dynamics (Moreno-Bote,
Rinzel, & Rubin, 2007). Gaze alternation modulates the feed-
back to decision-forming populations. Inspired by a two-
alternative visual bundle task (Huang et al., 2024), this frame-
work allows the comparison of theoretical insights with empir-
ical data to investigate the role of gaze in decision-making.

Methods

The two-alternative bundles decision-making task. The
two-alternative bundles task (Huang et al., 2024) consists of
the simultaneous presentation of two bundles of visual items.
Each bundle contains 3 shape items disposed vertically either
on the left or on the right of the screen (sk,L, or sk,R,k = 1,2,3).
The respective items are associated to rewards whose nomi-
nal value ranges between 0 and 5. The value of the two bun-
dles (bvL = ∑3

k=1 sk,L,bvR = ∑3
k=1 sk,R) ranges between 0 and 15.

The subjects report their decision by directing their gaze to the
chosen bundle, and holding fixation on it for 400 ms. Correct
choice consists in selecting the bundle with highest value, re-
warded with liquid of size proportional to best bundle value.
Incorrect choices incur in a 3 s time time-out penalty.

The gaze and decision model. The interaction between de-
cision formation and gaze direction is modeled by hypothe-
sizing mutual inhibition between the respective (1, decision;
2, gaze) population pairs (each containing L, left or R, right
units). We supposed that the bundle shapes (sk,L,sk,R,k =

1,2,3) are visually sampled by multiplication to gaze bias sig-
nals (bL(t),bR(t)). The left or right bundle sampling is fed
to the respective decision populations through scaling factors
α(1)

L ,α(1)
R , implementing choice formation. The output of deci-
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Figure 1: Model diagram and simulation results. A. Model diagram outline. B. Probability of choosing the right option (top)
and fraction of time directing gaze to right bundle side (bottom) for all pairs of right and left bundle values (bvR, x-axis, bvL, y-axis).
Parameters used: dt = 0.1 ms, τ(1) = 100 ms, τ(2) = 30 ms, w(1)

LL = w(1)
RR = 0.05, w(1)

LR = w(1)
RL =−1, w(2)

LL = w(2)
RR = 0.5, w(2)

LR = w(2)
RL =−2,

α(1) = 1,α(2) = 0.1, σ(1) = 5,σ(2) = 0.08,τξ = 1000 ms, b0 = 0,b1 = 1. C. Firing rate of the neural populations (decision, top left;
gaze, top right) and gaze signals (bias, bottom left; direction, bottom right) for a sample trial configuration (bvL = 4,bvR = 5). Gaze
signals panels include moving mean filtered versions (dotted, movmean). D. Task psychometrics for bundle value differences:
probability of right bundle choice and logistic fit (top left), fraction of time looking at best option and sigmoidal function fit (top
right), average occurrence of gaze shifts between the two bundles sides (bottom left) and of gaze shifts towards best/worst option
(bottom right), with dotted lines showing comparison with gaze shifts from empirical experiments by Huang et al. (2024).

sion populations is combined before being projected through
scaling factors to gaze populations implementing attractor net-
works with perceptual bistability, allowing alternations induced
by noise fluctuations (Moreno-Bote et al., 2007). The gaze
bias signals bL(t),bR(t) are fed back to model visual sampling.

The firing rates of the two (L/R) population pairs
(r(i)L (t),r(i)R (t), i = 1,2) are modeled by the following equations:

τ(i)L
dr(i)L

dt
=−r(i)L (t)+ f

(
w(i)

RLr(i)R (t)+w(i)
LLr(i)L (t)+ I(i)L (t)+ξ(i)

L (t)
)

τ(i)R
dr(i)R

dt
=−r(i)R (t)+ f

(
w(i)

LRr(i)L (t)+w(i)
RRr(i)R (t)+ I(i)R (t)+ξ(i)

R (t)
)

(1)
vL(t) = bL(t)∑3

k=1 sk,L

vR(t) = bR(t)∑3
k=1 sk,R

,
I(1)L (t) = α(1)

L vL(t)
I(1)R (t) = α(1)

R vR(t)
, (2)

gL(t) = α(2)
L r(1)L (t)

gR(t) = α(2)
R r(1)R (t)

,
I(2)L (t) = gL(t)− (gL(t)+gR(t))r

(2)
L (t)

I(2)R (t) = gR(t)− (gR(t)+gL(t))r
(2)
R (t)

.

(3)
The terms ξ(1)

L (t),ξ(1)
R (t) ∼ N (0,σ2

(1)), while ξ(2)
L (t),ξ(2)

R (t) are

Ornstein-Uhlenbeck processes, with stochastic equations

dξ
dt

=−ξ(t)
τξ

+σ2
(2)

√
2/τξz(t), z(t)∼ N

(
0,σ2

(2)

)
, (4)

and steady-state distribution ∼ N (0,σ2
(2)/(2τξ)). We used ReLU

for decision populations, modeling thresholded accumulation,
and tanh for gaze populations, following general practice re-
spectively from evidence accumulation and bistable switching
neural dynamic models. We define feedback gaze bias as

bL(t) = b0 +b1
|r(2)L (t)|

|r(2)L (t)|+|r(2)R (t)|
, bR(t) = b0 +b1

|r(2)R (t)|

|r(2)L (t)|+|r(2)R (t)|
. (5)

Decision output is sampled at T = 1000 ms: choose
R if r(1)R (T ) > r(1)L (T ), at T = 1000 ms, choose L other-
wise. This setting allows capturing full dynamics, though it
does not preclude making more detailed assumptions about
choice deliberation that may occur earlier, eventually indi-
cated via gaze fixation. We apply a moving mean filter
(movmean) on gaze bias signals using boxcar time windows
with duration 100 ms and shifted at each 10 ms time off-
sets. The gaze direction output is determined as: Look R if
movmean(bR(t))>movmean(bL(t)), Look L otherwise.

Choice probability and looking times. The average frac-
tion of choices for the right side bundle (Fig. 1D, top left)
is computed in discrete bins of bundle value difference, and
overlaid to the logistic fit of trial-based data, modeling choice
probability as P(ch = R) = 1/(1+ e−β0−β1(bvR−bvL)).

Gaze direction and shifts. We computed the average frac-
tion of time looking at best bundle (Fig. 1D, top right) in binned
values of absolute bundle value difference. Trial-based data
are fit to Fbest = a0 + a1/(1+ e−β′0−β′1 |bvR−bvL |). Gaze shifts are
defined as temporal discontinuities in Look L / Look R, com-
puted in 10 ms bins via discrete-time differentiation.

Results.

We computed the fraction of choices for right bundle and the
fraction of time spent directing the gaze to right bundle, gen-
erating 100 trials for each (bvL,bvR) pair (Fig. 1B). We show
the firing rates in a sample configuration (Fig. 1C). The de-
cision is significantly related with bundle values (Fig. 1D top
left, β0 = −0.01,β1 = 0.48, p < 0.001). The generated gaze



signals are directed for most part of the time towards the bun-
dle with the best value (Fig. 1D top right, a0 = −0.1,a1 =

1.11,β′
0 = 0.14,β′

1 = 0.35). Gaze shifts most often occur at low
bundle value differences (Fig. 1D, bottom), more frequently di-
rected to right/left bundle when right/left bundle has the best
value (Fig. 1D, bottom left). This is also shown by combin-
ing best/worst shifts at absolute value difference bins (Fig.
1D, bottom right). All results qualitatively align with behav-
ioral patterns reported by Huang et al. (2024), though em-
pirical overlays are shown only for gaze shifts (Fig. 1D, bot-
tom right, dotted lines) due to partial data availability. At the
current stage, other panels could only be qualitatively com-
pared against the same dataset. Beyond shown results, the
model supports testable predictions about gaze–choice inter-
actions, e.g., whether fewer gaze shifts lead to shorter re-
action times, or if gaze shifts coincide with neural encoding
alternations, while capturing known bidirectional effects such
as post-decisional gaze bias. Though not directly compared
to drift-diffusion models, our circuit-level approach captures
dynamic feedback unavailable to feedforward DDMs. Addi-
tionally, the model can be extended to explore gaze–decision
dynamics across more complex paradigms and may relate to
neural systems such as LIP or FEF involved in oculomotor
planning and value encoding.
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