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Abstract
Cognitive functions are mental processes essential for
goal-directed behavior. Impairments in these functions
are common in psychiatric disorders and significantly im-
pact quality of life. Artificial Neural Networks (ANNs),
trained on cognitive test data from human individuals, of-
fer a new model-based approach to study potential causal
links between brain network structure, cognitive function
and brain architecture.

In this study, we collected longitudinal cognitive data
from healthy individuals and patients (schizophrenia, de-
pression, autism spectrum disorder) to train individual-
ized ANNs and analyse their emerging network proper-
ties. Our results show that ANNs can learn participants’
behavior and, when initialized with suitable architectures,
exhibit a balance of integration and segregation in their
hidden layers, mirroring the brain’s topological organiza-
tion. Network topologies remain mostly robust across
randomized training iterations, and topological marker
distributions differ significantly (5 out of 6 comparisons
(t-test), p < .05). Our findings suggest that ANNs trained
on cognitive-behavioral data may serve as tools to under-
stand (brain) network properties underlying human cog-
nitive function in health and mental disorder.
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Introduction
Cognitive functions are mental processes crucial for goal-
directed behavior. Impairments often occur in psychiatric dis-
orders like schizophrenia, depression, and autism spectrum
disorders, significantly affecting quality of life. Structurally,
these functions rely on the coordinated activity of millions of
neurons, which can be studied via methods like functional
MRI (fMRI). These approaches have revealed that the brain
exhibits both functional segregation — specialized clusters
for task-specific processing — and global integration through
central hubs enabling flexible cognition. A balance between
these modes is believed to underpin cognitive capacity, while
imbalances are linked to psychiatric conditions (Bassett &
Sporns, 2017). However, due to limitations in neuroimag-
ing, particularly in capturing dynamic and fine-grained network
changes over time, such insights remain largely descriptive
and lack causal precision. In parallel, ANNs have advanced
considerably. Recent work suggests that ANNs trained on
behavioral data can reflect organizational principles similar to
those found in biological brains (Barak, 2017; Yang, Joglekar,
Song, Newsome, & Wang, 2019).

In this study, we train ANNs on cognitive-behavioral data
from healthy individuals and patients to analyze resulting net-
work topologies using graph-theoretical methods. Our goals
are twofold: to determine whether topological features of
ANNs trained on individual datasets (1) can model funda-
mental organizational principles of human brain function, and
(2) differ reliably between patients and controls — poten-
tially enabling personalized diagnosis and tracking of cognitive
change.

Experiment
This study employed a longitudinal design to collect the large
dataset required for training the described ANNs. Four par-
ticipants repeatedly completed a cognitive test battery con-
sisting of twelve tasks on their smartphones over several
months. The tasks covered cognitive domains such as
decision-making, executive functioning, relational processing,
and working memory (Figure 1), and were completed five
times per week for 20 minutes each session. The task dif-
ficulty levels were individually adjusted based on the perfor-
mance of each participant.

Figure 1: Example tasks for each of the four cognitive do-
mains.

In parallel, each participant underwent five MRI scans at
regular intervals, including similar cognitive tasks, to enable
comparison between artificial and biological network struc-
tures.

Methods
Each participant’s data from 12 cognitive-behavioral tasks is
used to train an individual recurrent neural network (RNN).
The goal is to reproduce response patterns similar to those
observed in humans by optimizing model parameters. The
RNNs receive encoded input sequences and learn partici-
pants’ behavior through iterative training.



The networks follow a shallow architecture with three lay-
ers: input (77 units), recurrent (256 units), and output (33
units). Layers are fully connected, with linear transformations
between layers and nonlinear activation in the recurrent layer.
This setup offers a balance between sufficient complexity for
task learning and simplicity for subsequent topological analy-
sis. Network parameters are optimized via Backpropagation
Through Time (BPTT) using the Adam optimizer. Model se-
lection was done through randomized grid search and with
respect to highest performance. After training, the artificial
networks are analyzed using graph-theoretical methods to ex-
amine topological features.

Results

Performance was measured using a population vector
method, counting outputs as correct if within 35° of the par-
ticipant’s response. ANN training accuracy ranged from 0.7 to
1.0, and test accuracy from 0.5 to 1.0, indicating that ANNs
can learn to predict individual behavior from the cognitive task
battery.

Figure 2 shows results from a stable data phase (months
3–5) with consistent task difficulty and behavior. It displays
RNN training (top) and test (bottom) performance, along with
hidden layer functional correlation (Gram) matrices used to
extract topological markers.

Figure 2: Training and test performance of a model trained on
data from a healthy participant for three consecutive months.
Below, the corresponding functional correlation matrices of
the models’ units in the hidden layer are shown, respectively.

To evaluate the within-subject robustness of our results,
neural networks were trained multiple times using the same
architecture and data, varying only in initial weight initializa-
tion and data shuffling. We then analyzed topological markers
— such as average degree, average betweenness, and assor-
tativity — both within and across participants.

Results showed that within-month distributions of mark-
ers exhibited very low variance (2 out of 3 markers < 0.01).
Within-subject marker distributions across months were gen-
erally stable, except in cases where task difficulty was adapted
(13 out of 24 comparisons (t-test) were non-significant). In
contrast, between-subject differences were largely significant
(5 out of 6 comparisons (t-test), p < .05), with the only ex-
ception being the comparison between the healthy and the
depressed participant.

These findings indicate that topological network properties
are reliable within and meaningfully different between individ-
uals.

Figure 3: Topological Marker distributions of 20 models
trained with the same hyperparameters on healthy control
data.

Discussion
The results demonstrate that individually trained RNNs can
learn the cognitive behavior of real participants with distinct
cognitive profiles. In doing so, the networks capture robust
and significant differences between participants in the topol-
ogy of their hidden layers, while maintaining reliable consis-
tency within participants. During stable phases — character-
ized by constant task difficulty and participant performance
— topological markers remain consistent across training runs.
However, when task difficulty or behavior changes, these
marker distributions shift significantly.

These findings show that RNNs can distinguish individual
cognitive profiles and track changes over time. This approach
could help model the dynamics of mental disorders and ex-
plore how neural networks align with brain architecture to fur-
ther study cognition in health and disease.



Code availability
All necessary code for training and analyzing the networks
described here is available on GitHub:
https://github.com/oliver-frank/art beRNN
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