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Abstract 
Traditional fMRI’s reliance on fixed task paradigms 
perpetuates the reverse inference problem, limiting 
specificity in brain-behavior mapping. We present 
Reinforcement Learning via Brain Feedback (RLBF), 
an approach reversing the direction of inference by 
using real-time fMRI and reinforcement learning to 
dynamically adjust stimuli – optimizing the ‘stimulus 
space’. In a visual cortex proof-of-concept study 
(N=10), the algorithm successfully optimized 
checkerboard parameters within 35 trials, improving 
brain prediction from chance-level to a mean 
absolute percentage error (MAPE) of 12.7% (SD: 
6.3%; inter-trial improvement of 0.6%) and achieving 
stable convergence, despite fMRI noise. Stimulation 
optimization revealed a preference for maximum 
contrast stimuli at 18Hz (+/-10Hz across participants) 
– aligning with known visual processing properties – 
and demonstrated the potential for brain activity to 
effectively tune AI models, offering new avenues for 
personalized experimental design and rigorous 
testing of reverse inference claims.  
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Introduction 
In traditional human neuroimaging experiments, 
researchers construct experimental paradigms with a 
certain psychological/behavioral construct validity to infer 
the corresponding neural correlates. Here we introduce 
a novel approach called Reinforcement Learning via 
Brain Feedback (RLBF), that inverts the direction of 
inference; it searches for the optimal stimulation 
parameters to maximize (or minimize) response in 
predefined brain regions or networks (fig.1). The 
“stimulus space” is optimized by a reinforcement 
learning algorithm (Kaelbling et al., 1996) which is 
rewarded based on real-time fMRI (Sulzer et al., 2013) 
data. Specifically, during ongoing real-time fMRI 
acquisition, the reinforcement learning agent 
manipulates the stimulus space (e.g. by means of 
generative AI) to drive the participant’s neural activity in 
a specific direction. Then the agent is rewarded based 
on the measured brain responses and gradually learns 

to adjust its choices to converge towards an optimal 
solution. Here, we present the results of a proof of 
concept study that aimed to confirm the viability of the 
proposed approach with simulated and empirical real 
time fMRI data. 
 

 
Figure 1. Concept behind RLBF. Instead of using 
an experimental paradigm, we represent a broader 
paradigm space by generative modelling. This 
generative model is controlled or fine-tuned by 
reinforcement learning, resulting in an approximately 
optimized stimulation strategy. 

Methods 

In our proof of concept study, we aimed to construct a 
streamlined setup. 
Reinforcement Learning: To implement the 
reinforcement learner (fig 1. “Reinforcement Learning”), 
we used a simple and widely used algorithm, a soft 
Q-learner (Haarnoja et al., 2017) with a smooth reward 
function.  
Stimulus Space: Participants viewed multiple iterations 
of a flickering checkerboard, where contrast and 
frequency (values between 0 and 1) served as free 
parameters within the stimulus space (Fig. 1, "AI 
Paradigm Generator"). Contrast value of zero resulted in 
no difference to the resting block. The reward signal for 
the reinforcement learner was calculated from brain 
responses in the primary visual cortex (V1), as 
measured by a linear model fitted on a single block of 
data measured in a block-design fashion, with 5 seconds 
of visual stimulus followed by 11 seconds of rest. The 
hypothesis function was convolved with the canonical 
SPM HRF. In this setting, the task for the agent was to 
figure out the optimal contrast-frequency configuration 
that maximizes a participant’s brain activity in V1. 



In-silico Hyperparameter Tuning: we defined the 
optimal ground truth as a linear function of contrast and 
flickering frequency, with maximum activation at maximal 
contrast and an arbitrary frequency value of 0.7. In one 
simulation run, the reinforcement learner had 100 trials. 
In each trial the agent picked a contrast and frequency 
value and updated its Q-table based on the reward that 
was calculated by our ground truth equation, with added 
Gaussian noise. We fine-tuned the hyperparameters for 
the models using realistic parameter initialization 
(signal-to-noise: 0.5 - 5; q-table smoothing : 0.5 - 4.0; σ
soft-Q temperature: 0.2; learning rate: 0.05 - 0.9). 
Study Participants: with parameters chosen based on 
our simulation results, we measured data in n=10 
participants (M=5, F=5; mean age=25,9, age SD=3.93), 
to establish the proof of concept. The first N=3 
participants’ fMRI runs were also utilized to further 
improve RL hyperparameters (manually adjusted). 
Software: the RLBF methodology is implemented as a 
python package (Gallitto et al., n.d.-a). 

Results and Discussion 
Simulation results show that the proposed 
implementation provides robust solutions in a 
relatively wide range of initial conditions, within a 
small number of trials (see Table 1). Overall, high 
q-table smoothing =4.0) appears to function well (σ
with SNRs >= 2.0, with lower learning rates (0.02) 
and temperature (0.08) for optimal training. The 
model displayed a remarkable stability with 
decreasing prediction error (MAPE) across trials 
(Table 1). Results from the empirical measurements 
are in line with knowledge about the contrast and 
frequency dependence of the checkerboard 
response (Albrecht & Hamilton, 1982; Victor et al., 
1997, Albrecht et al., 2003) and provide initial 
confirmation for the feasibility of the proposed 
approach (code, analyses and empirical data are 
disclosed in our supporting repository, see Gallitto et 
al., n.d.-b). 
We've introduced Reinforcement Learning with Brain 
Feedback (RLBF), a novel experimental approach to 
find optimal brain stimulation for modulating 
individual brain activity. This proof-of-concept used a 
simplified setup, but future work will focus on 
extending it to generative AI solutions. By inverting 
inference from ("brain -> behavior"; instead of 

“behavior -> brain”) RLBF could become a new tool 
for basic and translational research. When paired 
with generative AI, RLBF has the potential to offer 
novel individualized treatments, such as 
AI-generated text, video, or music optimized for e.g. 
improving mental states like e.g. pain or anxiety. 
 

Subject Run MAPE SNR Q-table Max 

sub-001 1 -0.0165 3.75 [0.9, 0.5] 

sub-001 2 -0.0090 3.39 [0.9, 0.0] 

sub-002 1 -0.0015 2.85 [0.9, 0.9] 

sub-002 2 -0.0013 3.48 [0.9, 0.0] 

sub-003 1 -0.0138 2.91 [0.9, 0.0] 

sub-003 2 -0.0072 4.63 [0.9, 0.9] 

sub-004 1 -0.0086 6.85 [0.9, 0.0] 

sub-004 2 -0.0095 4.94 [0.9, 0.9] 

sub-005 1 -0.0157 3.18 [0.9, 0.9] 

sub-005 2 -0.0050 4.15 [0.9, 0.9] 

sub-006 1 -0.0065 4.03 [0.9, 0.0] 

sub-006 2 -0.0169 4.28 [0.9, 0.9] 

sub-007 1 -0.0142 3.25 [0.9, 0.0] 

sub-007 2 0.0085 3.13 [0.9, 0.9] 

sub-008 1 -0.0014 4.02 [0.9, 0.9] 

sub-008 2 -0.0037 4.09 [0.9, 0.9] 

sub-009 1 0.0026 4.52 [0.9, 0.9] 

sub-009 2 -0.0071 4.06 [0.9, 0.9] 

sub-010 1 -0.0039 3.72 [0.9, 0.0] 

sub-010 2 0.0002 4.20 [0.9, 0.0] 

Table 1: Regardless of data noisiness, the algorithm 
consistently achieved maximum contrast at the 35th 
trial (see Q-table Max as [contrast, frequency]), 
showing moderate improvement slopes (MAPE). 
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