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Abstract
During perception, the brain continuously processes sen-
sory input, selecting among competing interpretations
and assigning certainty -confidence- to each. Typically,
confidence correlates with the strength of sensory evi-
dence. In bistable perception, however, one interpreta-
tion is confidently perceived at a time, yet perception al-
ternates despite no changes in the stimulus. We investi-
gate which properties of visual stimuli drive this dissocia-
tion between evidence strength and confidence. We pro-
pose that bistability arises from approximate probabilis-
tic inference over an internal representation of a stimulus
with strongly coupled features. Using the Necker cube as
an example, we model how perceived depth at each ver-
tex is coupled with its neighbors, reflecting natural co-
occurrence statistics. We analyze the dynamics of three
inference algorithms. In all cases, strong feature coupling
introduces loops in the internal representation that stabi-
lize one percept, while internal noise drives perceptual
switches. This creates a double-well potential, with per-
ception fluctuating between high-confidence states. To
test this, we designed a bistable stimulus in which fea-
ture coupling and sensory strength were independently
manipulated. Our results show that stronger coupling
leads to higher reported confidence, even when sensory
evidence is weak. These findings suggest that bistable
perception results from internal inference dynamics when
stimulus features are tightly coupled.
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Approximate inference of bistable stimuli
Probabilistic graphical models (PGMs) offer a framework for
understanding how inference runs between representations of
low-level sensory features and large-scale objects. The PGM
structure represents the probabilistic associations between
features in the agent’s internal model of the world (Gershman,
Vul, & Tenenbaum, 2012).

Here, we used a binary Markov Random Field (MRF). In
the Necker cube MRF (Fig. 1), the latent variables xi (Fig.
1, circles) represent the depth of the corresponding vertices
(xi = ±1 front/back). The joint posterior distribution for each
3D configuration is p(x|s) ∝ exp(k(x)), with x = (x1, ...,x8),
s the stimulus and k(x) = ∑(i, j) θi j xix j +∑i Bxi the negative
energy of each configuration. θi j represents the probabilis-
tic coupling between features (Fig. 1, squares). Given that
vertical and horizontal lines tend to join points at the same
depth, we set θi j = J > 0 when nodes i and j are connected
horizontally/vertically, and θi j = −J if they are connected by
a diagonal. Bi encodes the bias or sensory information. To
compute the probability that a node is in the front or back,
p(xi|s), and to reconstruct the 3D structure from the 2D im-
age, we use approximate inference. This provides the ap-
proximate marginal q(xi) ≈ p(xi|s), representing confidence.
Importantly, the same framework can be applied to model per-

ception of other stimuli, simply adapting the MRF to reflect
probabilistic associations between the stimulus features.

Figure 1: PGM of the Necker cube. The rightmost node rep-
resents a linear read-out of the marginal posteriors.

The coupling between beliefs leads to bistable
perception

We investigated three common inference algorithms that have
been hypothesized to be implemented by the sensory cor-
tex (Haefner, Beck, Savin, Salmasi, & Pitkow, 2024): Gibbs
Sampling (GS) (Gershman et al., 2012), Mean Field (MF)
and Loopy Belief Propagation (LBP) —as well as its exten-
sion, Fractional Belief Propagation (Wiegerinck & Heskes,
2002)(FBP), designed to perform better in cyclic graphs. MF,
LBP and FBP are embedded in a continuous dynamical sys-
tem where each variable encodes one approximate marginal
(qi(t) ≈ q(xi = 1)). While MF assumes independence of the
marginals over latent variables, LBP considers pairwise in-
teractions. FBP weighs these interactions by a parameter
α to prevent circular inference: α = 1 corresponds to LBP,
and α → 0 yields MF. In these algorithms the percept evolves
within an energy landscape (Moreno-Bote, Rinzel, & Rubin,
2007) (Fig. 2a-b), with local minima as fixed points. Increas-
ing the coupling (J) leads to a shift from monostable to bistable
potential, whereas sensory evidence (B) modulates the asym-
metry of the potential (Fig. 2a, middle). In the absence
of sensory evidence, the critical coupling whereby bistability
emerges is J∗ = 1/N for MF and J∗ = log(N/(N − 2α))/2α

for FBP, where N is the number of node neighbours (N=3 for
the Necker cube). Increasing α increases J∗, making infer-
ence more robust to loops, which reduces over-confidence.

On the other hand, GS updates one random binary vari-
able xi at each step n, where a change of value is more
probable if it leads to a lower energy configuration: p(xn

i ̸=
xn−1

i |xn,xn−1) = σ(k(xn)− k(xn−1)), where σ(x) = 1/(1 +
exp[−x]). Under strong coupling, the system will spend
more time in the least energetic states, corresponding to the
two cube configurations, as the high energy barrier makes
switches infrequent (Fig. 2c). The approximate posterior
qi = q(xi = 1) is taken as the average of xi across T samples.
We derive analytical approximations for the distribution of the
posterior p(q) (Fig. 2d). For short T, the system gets stuck
in one interpretation, showing therefore a bimodal distribution.
Only for very large T, the system explores the two interpre-
tations equally, approximating the true posterior p(q) = 0.5.



If sensory evidence is added, then one interpretation will be
more explored than the other.

We further derived analytically the stationary distribution for
each algorithm, which allows us to compute model likelihood
and to fit models to experimental data. All the algorithms also
reproduce two hallmarks on bistable perception (not shown):
Levelt’s four propositions (Brascamp, Klink, & Levelt, 2015),
which capture the relationship between the stimulus strength
and the duration of dominance of a percept in bistable per-
ception; and hysteresis (Hock, Kelso, & Schöner, 1993), a
tendency of perception to be stuck temporarily even in the
presence of an incongruent stimulus.

Figure 2: a. Left: perception evolves in an energy potential.
Middle: This potential is modulated by coupling and stimulus
evidence. Right: final percept. b. Example MF dynamics,
for different values of J and B. c. Example GS dynamics,
average of x∗ = (x1, ...,x4,−x5, ...,−x8)., for different values
of J, B = 0. d. Cumulative distribution function (CDF) of the
distribution of the posterior p(q) for B = 0 (top) and B > 0
(bottom), J = 1.

Experimental validation
Human participants (N=30) were presented with random dots
moving horizontally (green leftwards and red rightwards, or
vice-versa), creating the perception of a rotating cylinder (Fig.
3a). They reported the color they perceive as being at the
front as well as the clarity of their percept (i.e. perceptual
confidence). Probabilistic coupling between the perception
of depth of neighbouring dots is due to their similar velocity
(structure-from-motion). Such coupling can be abolished by

shuffling the velocity across dots. In the participants’ reports,
confidence increases with stimulus strength (relative size of
red vs green dots; Fig. 3c, dots). Crucially, high coupling
(zero shuffling) leads to overconfidence (irrespective of stimu-
lus strength) (Fig. 3c bottom row, dots). In other words shuf-
fling the velocity abolishes bistable perception by destroying
coupling between features.

We then created a PGM for this particular stimulus (Fig.
3b), where latent variables also represent depth, and are cou-
pled to their neighbors because of their similar velocity. After
analyzing the inference algorithms in this framework, we fit-
ted the MF model to the data (Fig. 3c, violins). The model
could describe all the dependencies seen in the participants’
reports. With this, we see that bistable perception emerges
due to the probabilistic coupling between the features, which
produce loopy inference.

Figure 3: a. Experimental setup. b. PGM of the cylinder.
c. Confidence towards green in front, of a single participant
(dots), for different values of coupling and stimulus evidence.
Violin plots represent the fitted model distributions.
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