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Abstract

Similarity judgments offer a window into the mental
representations people use to make sense of objects
and events—yet most prior work has focused on static
images, leaving dynamic scene understanding under-
explored. We introduce a novel large-scale dataset
of 56,000+ odd-one-out similarity judgments for 250 3-
second videos of everyday naturalistic social actions. Us-
ing representational similarity analysis (RSA), we com-
pare human similarity judgments to behavioral ratings of
social-visual features, fMRI responses, and embeddings
from pretrained deep neural networks (DNNs). Language
model embeddings from human video annotations ex-
plained the most unique variance in behavior, followed by
social-affective features and visual DNNs. Neural activity
in high-level social perception regions (EBA, LOC, STS,
FFA) mirrored the behavioral similarity structure, whereas
early visual and scene-selective areas did not. Variance
partitioning showed that behavioral and model-derived
features captured both overlapping and complementary
structure, and their combination reached the level of split-
half agreement in the data. This highlights how current Al
models, especially language models encoding semantic
information, perform well in approximating human judg-
ments. Together, these findings and dataset reveal the
nature of social event representations and offer a frame-
work for evaluating model-brain—-behavior alignment in
dynamic social perception.
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Introduction

Humans effortlessly understand different types of social in-
teractions and use this information to make social judgments
from early in development (Thomas et al., 2022). Measur-
ing perceived similarity between interactions provides a win-
dow into the structure of the underlying mental representa-
tions. While prior work has explored these representations us-
ing static objects (Hebart et al.l |2020) or actions (Dima et al.,
2022), it remains unclear which features drive similarity judg-
ments in naturalistic, dynamic social interactions—and how
these judgments align with neural and model representations
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Figure 1: Overview of RSA methodology used to calculate
the representational similarity between various features and
human similarity judgments.

(Peterson et al., 2016 [Vo et al., [2019). To extend this work
to rich, dynamic social interactions, we investigate how peo-
ple assess similarity between naturalistic videos depicting two
people engaged in everyday actions. Using a triplet odd-one-
out design, we collected targeted comparisons that empha-
size salient social-visual distinctions. We then applied RSA to
relate these human judgments to: (1) behavioral ratings of so-
cial and perceptual attributes, (2) fMRI responses from visual
and social brain regions, and (3) embeddings from image-,
video-, and language-based DNNs. This framework allows us
to evaluate the extent to which each feature space explains
human judgments.

Methods

Stimuli and Similarity Judgments We collected 56,421
triplet judgments on an existing dataset of 250 short (3s)
videos of everyday social interactions (McMahon et al., [2023)
curated from the Moments in Time dataset (Monfort et al.,
2020). For this analysis we focused on the 25,623 ftrials
from the pre-defined 200-video training set in (Garcia et al.,
2025;McMahon et al.;,2023). Participants (N=215) completed
odd-one-out similarity judgment tasks (e.g., |Hebart et al.,
2020) on Meadows Research (https://meadows-research
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Figure 2: Unique and shared explained variance (R2) for behavioral features and DNN modalities obtained via multiple linear
regression. The variance is decomposed into (a) unique contributions from individual features (behavior), (b) best modality RSM
(DNNs), and (c) shared and total variance in predicting human similarity judgments. Behavior & DNN is decomposed into unique
(UV), shared, and total (all possible features combined) variance. The dashed line is the split-half reliability (R> =0.252)

.com), selecting the video least similar to the other two in
each trial. Previously, an independent sample (N=150;McMa-
hon et al., [2023) rated the video set across 13 social-affective
and perceptual attributes, which were used to compute repre-
sentational similarity matrices (RSMs) based on pairwise eu-
clidean distances between videos in each feature space.

Unique and Shared Explained Variance Partitioning We
computed a 200x200 similarity probability matrix from human
odd-one-out judgments (Figure [f) and compared it to repre-
sentational similarity matrices (RSMs) derived from (1) be-
havioral ratings, (2) embeddings from pretrained DNNs (lan-
guage: e.g., MPNet (Song et al.l |2020) embeddings evalu-
ated on sentence captions of the videos, image: e.g., CLIP
(Radford et al.,2021)); video: e.g., X3D (Feichtenhofer,2020)),
and (3) fMRI responses from regions implicated in social and
visual processing (EBA, STS, LOC; |Pitcher & Ungerleider,
2021; |Wurm & Caramazzal, |2022), face-selective (FFA; Kan-
wisher et al.l [1997), early visual (EVC), and scene-selective
(PPA; [Epstein & Kanwisher, [1998) regions.

Next, using cross-validated multiple linear regression RSA,
we quantified the unique and shared variance in human simi-
larity judgments explained by each feature space individually,
as well as by the combined behavioral-DNN feature.

Results

Similarity structure corresponds to high-level social rat-
ings and DNN features We first conducted RSA between
each feature space and behavior similarity. Figures are not
shown due to space constraints. For behavior features, inti-
macy, dominance, agent distance, and expanse each signif-
icantly predicted similarity judgments (ps < .05), though no
single feature approached the split half reliability of similarity

judgments. Intimacy emerged as the strongest single behav-
ior predictor (R> = 0.1), though follow-up analyses suggest
this largely reflects the presence of children in videos.

RSA between behavior similarity and fMRI revealed strong
alignment with social perception regions along the lateral
and ventral streams (EBA, LOC, FFA, STS). In contrast, the
early visual cortex (EVC) and scene-selective regions (PPA)
showed minimal correspondence (not shown for space).

Among pretrained DNNs, average embeddings from lan-
guage models best predicted human judgments, outperform-
ing vision models. Video models uniquely captured far less
variance, showing limitations in current model architectures.

Multiple regression RSA and variance partitioning Next,
we conducted multiple regression RSA and variance partition-
ing using all behavioral features and the top DNN in each
model modality (image: CLIP_R50; video: X3D_M; language:
Multilingual MPNet). Results (Figure [2) showed that behav-
ioral and DNN features each uniquely explained human simi-
larity judgments, with DNNs accounting for the majority.

Discussion

We introduced a novel large-scale dataset of over 56,000
human similarity judgments to systematically characterize
how people represent dynamic social interactions. Our re-
sults reveal that humans rely on combined social-semantic
dimensions, as well as visual cues. Neural responses in
specialized social-perception regions—particularly STS and
EBA—robustly mirrored this representational structure, while
early visual and scene-selective areas showed minimal cor-
respondence. Our modeling analyses showed that modern
DNNs can closely align with the structure of human similar-
ity judgments on dynamic social scenes, especially language
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models evaluated on sentence captions (R> = 0.170). Pure
vision models alone (R}, = 0.134, R%,,, = 0.127) had
lower performance (consistent with |Garcia et al., [2025). Fur-
ther, DNNs combined with human behavioral ratings, showed
higher total explained variance, and reaching the split half re-
liability. We use behavioral ratings as a perceptually grounded
reference to evaluate how well model-derived representations
align with human social perception. Together, our dataset
and results offer a robust framework for model-brain—behavior
alignment and a road map for developing integrative models
that capture the complexity of human social perception.
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