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Abstract
Many circuits in the brain are bidirectional and sparse.
Meaning that signals flow from sensory inputs to later
areas and back; yet, between any two connected areas
there exist some but not all pathways. What advantages
or disadvantages do these architectures confer, com-
pared to feedforward or fully connected networks? To ad-
dress this question, we introduce a new class of partially
recurrent neural network architectures, between these
two extremes. An exhaustive search of these architec-
tures reveals significant differences in their performance,
learning speed and robustness to noise. Though, surpris-
ingly, many perform as well as, or even better than, fully
connected networks, despite having fewer parameters (a
proxy for wiring cost). To explain these functional differ-
ences, we show that different architectures learn distinct
input-output mappings and memory dynamics, both of
which are predictive of function. Ultimately, our results
demonstrate that partial recurrence allows networks to
maximize performance with minimal wiring. More broadly,
our work provides a general framework for linking net-
work structure to function.
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Introduction
Experimental data, across species, has demonstrated that
neural circuits are bidirectional, yet sparse (Cook et al., 2019;
Lin et al., 2024). How do these structural properties shape
network function? Determining this in vivo is challenging, but
in silico one can design and compare networks with differ-
ent structures. E.g. recurrent neural networks with low-rank
(Mastrogiuseppe & Ostojic, 2018; Liu et al., 2024) or modular
(Achterberg, Akarca, Strouse, Duncan, & Astle, 2023; Béna
& Goodman, 2025) weight matrices. Functional results from
these approaches suggest that either many structures are de-
generate, i.e., they yield the same outputs (Edelman & Gally,
2001; Marder & Taylor, 2011), or that densely connected net-
works, with more parameters, would always be more perfor-
mant. However, more challenging tasks or alternative mea-
sures of function, e.g. robustness to noise, could reveal differ-
ences between these structures, and perhaps even scenarios
in which sparser networks outperform dense networks.

Methods
To explore this, we compare how neural networks with differ-
ent architectures perform on a set of maze tasks. In these
tasks, we simulate networks as agents in grid environments,
with paths the agents can move on, impassable walls and a

set of noisy sensors, which provide clues about the shortest
path through the maze. To perform these tasks, each network
implements a three-step sensation-action loop. First, they
sense their local environment. Often, we add independent
Gaussian noise to each sensor at each time step. Next, they
pass these inputs through a series of units and weighted con-
nections. Finally, networks choose and implement an action;
either pausing or moving in a cardinal direction. To optimise
each network’s weights we used deep Q-learning (Jensen,
2024; Mnih et al., 2013). To quantify performance / fitness
we define a function which ranges from 0 - ending the trial
at the furthest point from the goal, to 1 - taking the shortest
path from start to goal. To measure learning speed we score
networks from 0 - not learning the task, to 100 - learning the
task as fast as possible. To quantify robustness we measure
each trained network’s fitness as a function of increasing sen-
sor noise, and take the area under this curve. For statistical
comparisons across architectures we use Mann–Whitney U
tests with corrections for multiple comparisons.

Results

Partially recurrent neural networks

Given an artificial neural network with: a layer of inputs, a hid-
den layer and an output layer, there are 9 possible connection
pathways / weight matrices (Figure 1A). Assuming the feed-
forward connections (Wih and Who) are always present, and
each of the other 7 matrices can be present in any combi-
nation yields 27 = 128 distinct architectures. In this model,
excluding all 7 additional weight matrices yields a pure layer-
layer feedforward network. While, including all 7 generates a
fully connected network - in which every unit connects bidi-
rectionally to every other unit (Figure 1B). Between these two
extremes, are 126 architectures. We term these architectures
partially recurrent as information flow can be bidirectional -
from input sensors to output actions and back, yet sparse - in
the sense that it cannot flow via all possible paths.

Different architectures realise different fitness,
sample efficiency and robustness to noise

We began by training all 128 architectures on a maze task,
which requires some memory. To capture intra-architecture
variability, across random seeds (Patterson, Neumann, White,
& White, 2024), and to enable fair inter-architecture compar-
isons we trained 50 networks per architecture; yielding 6,400
trained networks.

Fully connected networks learned the task well, achiev-
ing a median fitness of 0.93± 0.01 std (Figure 1C). By con-
trast, only two architectures were consistently unable to learn



Figure 1: A. For a neural network with an input layer (i), hidden layer (h) and output layer (o), there are 9 possible connection
pathways / weight matrices; labelled as Wf rom−to. B. Assuming the feedforward pathways are always present, and the other 7
can be present or absent yields 128 architectures. Here, we highlight 4 of these architectures; with each layer/weight matrix
represented by a single node/arrow. C. Different architectures are differently robust to noise. We plot the median fitness per
architecture (across 50 networks) as a function of increasing sensor noise. D. Different architectures learn distinct memory
dynamics. We plot the median (solid line) and interquartile range (shaded surround) memory per architecture as a function of
time. In panels C and D all 128 architectures are plotted in grey, and the 4 from panel B are highlighted.

the task well: the pure layer-layer feedforward architecture
(0.48± 0.02 std), and an architecture with additional forward
skip connections Wio (0.49± 0.03 std). Notably, larger feed-
forward networks, with the same number of learnable parame-
ters as the fully connected networks, were still unable to learn
the task well (0.56±0.01 std). This is due to the fact that nei-
ther of these architectures retain any information from prior
time steps, and so cannot solve tasks which require some
form of memory. Surprisingly, the remaining 125 architectures
all achieved median fitnesses between 0.91 and 0.93. Though
none performed significantly better than the fully connected
network. By contrast, 19 architectures learned significantly
faster than the fully connected network, and 9 were signifi-
cantly more robust to noise. The fastest learning and most
robust architectures are shown in Figure 1B.

Together, these results demonstrate that many architec-
tures can implement robust behaviours; equivalent, or even
better than a fully-connected network. Despite having distinct
structures and far fewer learnable parameters (in some cases
as low as a quarter of the fully connected network).

Different architectures learn distinct input-output
mappings and memory dynamics

To understand why different architectures function differently,
we measured two properties from each trained network (using
data from 1,000 test trials per network).

First, we define a measure of a network’s sensitivity at time
t to its inputs at time t + k (k ≤ 0) by how much a change
in those inputs leads to a change in those outputs. More pre-
cisely, the Frobenius norm of the Jacobian matrix of the partial
derivatives of the outputs with respect to the inputs:
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We then define a network’s input sensitivity as the mean
value of the sensitivity at time t to inputs at time t: S =
⟨S(t,0)⟩. We also define the memory at lag k to be the ra-
tio of the sensitivity to past inputs compared to current inputs,
Mk = ⟨S(t,k)/S(t,0)⟩.

As such, when Mk = 0, the inputs from a previous time,
have no influence on the outputs at the current time. In feed-
forward networks, for example, M0 = 1 at lag 0, but Mk = 0 for
k < 0 - as prior inputs have no influence on the network’s out-
puts at a given time (Figure 1D). By contrast, values Mk > 0
indicate an influence.

Using these metrics we found that different architectures
are differently sensitive to their inputs and learn distinct mem-
ory dynamics (Figure 1D). For example, the fastest learning
architecture weights its current inputs more highly than prior
inputs. By contrast, the most robust architecture relies more
on its past inputs, and so implements a positive feedback strat-
egy; which works in this particular set of mazes. Most net-
works fall somewhere between these two extremes.

Finally, we trained random forest models to predict each
network’s function (fitness, sample efficiency, robustness)
from either of these metrics (S, M). All of these models per-
form significantly better than chance, showing that these met-
rics meaningfully describe network computation.

Discussion
Together, our results demonstrate that networks with specific
structures can perform as well as, or even better than fully
connected networks, while using far fewer parameters. Thus,
our work provides a starting point for considering why we ob-
serve specific types of connectivity in vivo. In this direction,
these partially recurrent architectures, and measures of net-
work sensitivity and memory, provide a new framework for ex-
ploring structure-function relations in neuroscience.
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