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Abstract
Neurobiological and cognitive models often tackle indi-
vidual facets of cognition, yet few successfully integrate
across multiple domains. For instance, (pre-transformer)
connectionist approaches explain a broad range of cogni-
tive phenomena, including graded semantics and context
sensitivity, but struggle with symbolic reasoning, compo-
sitionality and dynamic variable binding, necessary com-
ponents of language comprehension (Fodor & Pylyshyn,
1988; Marcus, 1998; Lake et al., 2017; Kazanina & Poep-
pel, 2023). Conversely, symbolic models excel at these
tasks but often lack a biologically inspired explanation of
how these symbolic operations might be implemented in
the brain (Do & Hasselmo, 2021). We propose a unified
model, inspired by (psycho-)linguistic theory (McElree et
al., 2003; Seuren, 2009), that integrates these aspects, fo-
cusing on the interplay between memory, unification and
control (Baggio & Hagoort, 2011). This model, which we
call Rate-Coding Bundle Memory (RCBM), is designed to
be both biologically plausible and capable of addressing
a variety of cognitive tasks, including those that require
the incremental integration and differention of entities in
linguistic descriptions of scenes. We demonstrate the
model’s performance on a range of tasks, including con-
trolled storage, memory retrieval, tracking multiple mem-
ories, and semantic inference; and show, by lesioning dif-
ferent components of the model, that the various mem-
ory and control components are crucial for the model’s
ability to perform these tasks. Our model improves upon
existing working memory models of the prefrontal cortex
(Manohar et al., 2019; Fiebig et al., 2020), and shows par-
allels with properties of grid- and place cells during hip-
pocampal replay (Do & Hasselmo, 2021; Kurth-Nelson et
al., 2023; Kazanina & Poeppel, 2023).

Keywords: working memory; symbolic computation; recur-
rent neural networks; cognitive neuroscience; computational
linguistics

Here, we present the Rate-Coding Bundle Memory (RCBM)
model, which builds on work by Manohar et al. (2019), whose
memory model aligns with multiple empirical findings about
working memory storage and retrieval. Their model dynami-
cally binds different semantic features together into conjunc-
tive neurons, which can subsequently be retrieved through a
winner-take-all mechanism. Although this approach maps well
onto neural correlates of memory retention, it still faces diffi-
culties in tasks such as discourse incrementation (accumu-
lating context as new information arrives), novelty detection
(separating new entities from familiar ones), and the prob-
lem of two (differentiating similar referents without conflation).
These limitations highlight the need for a control mechanism
– one that can orchestrate read-write processes and dynami-
cally suppress or enhance the retrieval of specific memories.

We redesigned this rate-coding model for a more linguistic
task, and extended it to include a control system (Figure 1).
We refer to our model as the Rate-Coding Bundle Memory
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Figure 1: The RCBM model consists of three main compo-
nents: a semantic system, a control system, and a memory
system. The semantic system (left and center) consists of
both visual and auditory sensory feature neurons (left) and
conceptual feature neurons (center). Each neuron in the se-
mantic system can directly receive external input through cor-
responding sensory or linguistic input. Linguistic input con-
sists of multiple sentences in an artificial language, presented
word-by-word. Each word is represented by a conceptual fea-
ture neuron, and these conceptual feature neurons are orga-
nized in increasingly abstract layers, with the rightmost layer
representing the most abstract concepts. Each non-sensory
semantic neuron can directly output corresponding artificial
words for the model to produce a response. The control sys-
tem (right top) consists of four control neurons: a novelty de-
tection neuron (N), an existing memory detection neuron (E),
an ambiguity detection neuron (A), and a memory suppres-
sion neuron (S). Special linguistic inputs can directly activate
the novelty detection neuron (determiner, e.g. a man v.s. the
man) and the suppression neuron (end-of-sentence token).
The memory system (right bottom) consists of two memory
pools: a Winner-Take-All Memory pool (WTAM) and a Multiple
Activation Memory pool (MAM). Each memory pool consists of
a set of memory neurons, which are connected to the concep-
tual feature neurons and have pairwise connections between
them. The control system interacts heavily with the memory
system, as it is responsible for activating the appropriate mem-
ory neurons and suppressing the memory system when nec-
essary.

(RCBM) model. The main tasks of the control system include
the identification of novel and existing stimuli and of detect-
ing ambiguity in the input, in order to aid the focused storage,
modification, and retrieval of the appropriate items. By pre-
senting artificial words to the network one by one, the network
identifies entities that are being referred to and is able to e.g.
distinguish between two similar referents (Figure 2).

We systematically tested this approach with a diverse set
of tasks wherein the network had to perform tasks across
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Figure 2: An example trial of the problem of two test, pre-
sented as a sequence of words in an artificial language (top).
In the first two sentences, the model is introduced to two en-
tities with an overlapping feature, e.g. a blue square and a
purple square. The next two sentences each start with this
overlapping feature (e.g. square) and then introduce a dis-
tinguishing feature (e.g. either blue or purple), requiring the
model to temporarily withold its response until the distinguish-
ing feature is presented. The model stores the two entities in
M1/S1 (sentence 1) and M3/S3 (sentence 2) in the WTAM and
MAM pools, respectively (bottom); when presented with the
overlapping feature (sentence 3/4), the ambiguity detection
neuron is activated (middle), supressing the winner-takes-all
process until disambiguating information is presented.

4 categories: controlled storage, memory retrieval, multiple
memories, and semantic association. These tasks encom-
pass challenges required for the comprehension of written
language, aiming to build up a coherent semantic represen-
tation of the presented information over time. Performance
was near-perfect on all tasks (Figure 3, top row). Lesioning
different components of our model lead to measurable reduc-
tions in performance (Figure 3), indicating that the control and
memory systems are crucial for the model’s ability to perform
these tasks.

Our results show that our proposed control mechanism can
be used for robust one-shot learning, ambiguity resolution,
and compositional semantic integration, all within a framework
that remains biologically plausible (which is not clear for trans-
formers). We propose that anatomically plausible regions for
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Figure 3: The RCBM model performs well on all tests, while
lesions to the model lead to systematic reductions in perfor-
mance. Each bar represents the proportion of trials (right y-
axis) that the model successfully (blue) or unsuccessfully (red)
completed for each test. The tests are displayed on the x-axis
(top) and grouped into four categories. The different lesions
are displayed on the y-axis (left), with each lesion representing
a different part of the model that was turned off. Per test, there
were up to 4 trial types that were each repeated 25 times, for
a total of 12000 trials across all tests and lesions.

memory integration such as the hippocampus and dorsolat-
eral prefrontal cortex could be directed by these control sig-
nals, gating which memories are retrieved, updated or sup-
pressed at any moment, enabling the understanding of linguis-
tic discourse. With RCBM, we thus offer a single model capa-
ble of addressing multiple recognized challenges in cognitive
neuroscience, and we hope that this work pushes forward the
idea of a unified account wherein connectionist and symbolic
aspects coexist naturally, rather than being “duct-taped” to-
gether at the algorithmic level.
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