
An Algorithmic Model of Working Memory Based on
Sparse Variational Gaussian Processes

Dongyu Gong* (dongyu.gong@yale.edu)
Department of Psychology, Yale University

Mario Belledonne* (mario.belledonne@yale.edu)
Department of Psychology, Yale University

Ilker Yildirim (ilker.yildirim@yale.edu)
Department of Psychology & Wu Tsai Institute, Yale University

*These two authors contributed equally to this work.

Abstract
Working memory (WM) involves dynamically manipulat-
ing information to support perception, decision-making,
and other higher-order cognitive processes. Despite ex-
tensive interests in modeling WM, the algorithmic basis of
how WM encodes and manipulates information and does
so in a goal-driven manner remains unclear. Here, we
propose a novel algorithmic model of WM that combines
sparse variational Gaussian processes with an adaptive
computation algorithm. The model recapitulates a wide
range of WM phenomena, including capacity limitations,
attraction-repulsion dynamics, and retrocue benefits.

Keywords: working memory; sparse variational Gaussian pro-
cess; inducing points; adaptive computation

Introduction
Working memory (WM) is a fundamental capability of the hu-
man brain that enables the temporary storage and manipula-
tion of information needed for higher-order processes such as
decision-making, reasoning, and planning (D’Esposito & Pos-
tle, 2015). What are the algorithms by which WM encodes and
manipulates information, and does so dynamically in the ser-
vice of our goals? Despite much progress in modeling WM,
including explaining its limited capacity and precision (Luck &
Vogel, 1997; Bays, Catalao, & Husain, 2009; Ma, Husain, &
Bays, 2014), an algorithmic account of WM encoding and rich
maintenance dynamics remains unclear.

Here, we introduce a new computational framework on the
algorithmic-level understanding of WM. We model WM rep-
resentations as sparse Gaussian processes (GPs), where
each item/feature is encoded as a probabilistic mapping be-
tween perceptual samples and their likelihoods. This frame-
work exposes a quantifiable atomic resource—the inducing
points—which form the core of sparse GPs. We leverage
these shared inducing points through a recently proposed
adaptive computation algorithm (Belledonne, Butkus, Scholl,
& Yildirim, in press) that can reallocate them in a goal-directed
manner to prioritize task-relevant information in WM.

Model Description
Gaussian Processes for Working Memory
A Gaussian process defines a distribution over functions such
that any finite collection of function values has a joint Gaus-
sian distribution: f (x)∼GP (m(x),k(x,x′)), where m(x) is the
mean function and k(x,x′) is the covariance kernel. Previous
work shows that the human brain can implement GP regres-
sion (Friedrich, 2020) and that people use GPs for function
learning (Griffiths, Lucas, Williams, & Kalish, 2008). In the
context of modeling WM, we can think of GPs as a probabilis-
tic framework that allows us to represent the inherent uncer-
tainty in WM representations.

Sparse GPs with Shared Inducing Points
WM is inherently limited in capacity (Cowan, 2001). In our
model, we employ a sparse variational GP framework (Titsias,

Sensory Inputs

Colors

Shapes

Locations

…

Textures

Sizes

Decision making

Color 1 Color 2

𝑧1 𝑧2 𝑧3 𝑧4 𝑧5

Stage 1: WM Encoding (e.g., color)

Stage 2: WM Maintenance

Sparse Variational Gaussian Processes with Shared Inducing Points

Simulate samples based on the GPs trained during encoding,
and refit the GPs in each epoch

Refine z and function values at z in each epoch to train the GPs

Task goal (e.g., retrocue) on item k*

𝒛 (targetable resources)

𝒛 (targetable resources)

(e.g., reproducing color)

Figure 1: Model schematic. Sensory inputs are represented
in sparse variational GPs with shared inducing points. WM
maintenance employs an adaptive computation algorithm to
optimize decision making on task-relevant items.

Figure 2: The set size effect. Retrieval error as a function of
set size and the number of encoding epochs. Items are in the
domain [0,1).

2009) that utilizes a shared set of inducing points to repre-
sent multiple items in memory (see Figure 1). These inducing
points are targetable resources that the model can allocate to
different items based on task relevance.

The shared inducing points are defined as a set of R lo-
cations in the input space, denoted as Z = {z1,z2, . . . ,zR},
with corresponding function values u = f (Z). To implement
the encoding process, we train the GP model on perceptual
samples and their likelihoods {x(k)i ,y(k)i }n

i=1 for each item k,
where n is the number of samples. We approximate the full
posterior with a variational distribution q(u). For each item k,
the encoding loss is given by:

L(k)
enc =−ELBO

(
fk(x(k)), y(k)

)
=−Eq(f (k)(x))

[
log p(y(k) | f (k)(x))

]
+KL(q(u)∥ p(u)) .

For a WM system encoding N items, the overall encoding loss
is: L = 1

N ∑
N
k=1 L(k)

enc.

Adaptive Computation Algorithm
After initial encoding, an adaptive computation algorithm dy-
namically reallocates the limited shared inducing points dur-
ing WM maintenance based on predicted task goals. In this
stage, the WM system no longer has access to the perceptual
samples, but instead relies on synthesized samples from the
approximated GP posteriors to maintain WM representations.

Synthesizing Samples for Maintenance: For each item k,
we sample x(k)sim uniformly from the domain and obtain the sim-
ulated function value by sampling from the GP predictive dis-

tribution: y(k)sim ∼ N
(

f mean
k

(
x(k)sim

)
, f var

k

(
x(k)sim

))
.

Maintenance Loss: For each item k, the main-
tenance loss based on synthesized samples is:

L(k)
sim =−ELBO

(
fk(x

(k)
sim), y(k)sim

)
.

Adaptive Weight Computation: The maintenance losses
are reweighted based on two signals, δm and δπk. (1)
δm represents the overall change in memory representa-

tion, calculated as δm =
∥∥∥∇Z

(
∑

n
k=1 L(k)

sim

)∥∥∥. (2) δπk reflects

goal–oriented gradients. For task-relevant item k∗, δπk∗ =∥∥∇ZLsim,k∗
∥∥, while for task-irrelevant items, δπk = baselineπ,

where baselineπ is a small constant. (3) For each item k, com-
pute ∆k = δπk · δm, and use a softmax to compute weights:
wk = exp(∆k/T)

∑
n
j=1 exp(∆ j/T)

. The weighted simulation loss is then

Lsim = 1
n ∑

n
k=1 wk L(k)

sim, which is used to update the inducing
point locations via gradient descent.

Total distance r

Noise level σ

Task:
Encode colors into WM
and retrieve them after a
delay

Under-capacity Over-capacity

Repulsion

Attraction

Figure 3: The attraction-repulsion effect. Upper panel:
heatmap of the Attraction-Repulsion Index as a function of
noise level σ and total distance between items r, with different
numbers of shared inducing points (R) representing the same
number of items (N = 4). Lower Left: task schematic. The
model encodes four colors with a varying σ and r. Lower Mid-
dle: the hypothetical attraction and repulsion effects. Lower
Right: the Attention-Repulsion Index as a function of the rela-
tionship between R and N, summarized across the heatmaps.

Experiments
We evaluate our model through a series of simulation experi-
ments designed to capture key WM phenomena.

Set Size Effect
The set size effect, where retrieval error increases with the
number of items, arises naturally from the limited resource of
WM (Ma et al., 2014). Using a fixed number of inducing points
(e.g., R = 100) and different numbers of encoding epochs,
our simulations confirm that as the number of items stored in
the WM system increases, the retrieval error grows (Figure 2),
reflecting the limited capacity imposed by the shared inducing
points. This aligns well with behavioral findings.

Encoding

Delay 1

Retrocue (valid)

Delay 2

Probe

°

Figure 4: The retrocue effect. Left: a color reproduction task
with a retrocue during the delay period. Right: comparison of
retrieval error under valid retrocue and neutral conditions.

Attraction-Repulsion Effect

Empirical studies have robustly documented both repulsion
and attraction effects as systematic distortions in WM rep-
resentations (Chunharas, Rademaker, Brady, & Serences,
2022). However, existing computational frameworks have
failed to systematically predict when one effect will dominate
over the other. To investigate the attraction-repulsion dynam-
ics, we simulate experiments with four WM items while varying
the number of shared inducing points, noise level, and dis-
tance between items (Figure 3). To quantify biases in memory
representations, we define the Attraction-Repulsion Index as
1
N ∑

N
i=1

xi−µc
r , where xi is the retrieved value for item i, µc is the

central tendency of the true values, r is the total range of true
values, and n is the number of items. Our model captures the
transition from attraction (index < 0) in under-capacity con-
ditions to repulsion (index > 0) in over-capacity conditions.
These are consistent with the empirical data from Chunharas
et al. (2022).

Retrocue Effect

The retrocue effect, wherein cued items are retrieved with
higher precision, is a hallmark of the flexibility and goal-
drivenness of WM (Griffin & Nobre, 2003; Souza & Oberauer,
2016). As shown in Figure 4, our simulation demonstrates that
when a cue directs attention to a specific item, the adaptive
computation algorithm reallocates the limited resources effec-
tively and the valid retrocue condition results in significantly
lower error, consistent with empirical findings.

Discussion
To provide a fully algorithmic account of WM, we have to
be concrete about the resources that realize WM processes
(i.e., the inducing points in our sparse GP) and the conse-
quence of exerting this resource on WM representations and
the downstream decision-making. Adaptive computation ra-
tions these resources using the simple product of these two
consequences. Through a series of simulation experiments,
we show that our model can provide mechanistic insights into
how WM encodes and flexibly maintains information. Future
work can extend this model to explore interactions between
WM and other cognitive systems (e.g., extending the synthe-
sis and loss to involve priors based on long-term memory) and
further validate the proposed computational mechanisms.

References
Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The

precision of visual working memory is set by allocation of a
shared resource. Journal of Vision, 9(10), 7–7.

Belledonne, M., Butkus, E., Scholl, B. J., & Yildirim, I. (in
press). Adaptive computation as a new mechanism for hu-
man attention. Psychological Review .

Chunharas, C., Rademaker, R. L., Brady, T. F., & Serences,
J. T. (2022). An adaptive perspective on visual working
memory distortions. Journal of Experimental Psychology:
General , 151(10), 2300.

Cowan, N. (2001). The magical number 4 in short-term mem-
ory: A reconsideration of mental storage capacity. Behav-
ioral and brain sciences, 24(1), 87–114.

D’Esposito, M., & Postle, B. (2015). The cognitive neuro-
science of working memory. Annual Review of Psychology ,
66(1), 115–142.

Friedrich, J. (2020). Neuronal gaussian process regression.
Advances in Neural Information Processing Systems, 33,
7090–7100.

Griffin, I., & Nobre, A. (2003). Orienting attention to loca-
tions in internal representations. Journal of Cognitive Neu-
roscience, 15(8), 1176–1194.

Griffiths, T., Lucas, C., Williams, J., & Kalish, M. (2008). Mod-
eling human function learning with gaussian processes. Ad-
vances in neural information processing systems, 21.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual
working memory for features and conjunctions. Nature,
390(6657), 279–281.

Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing
concepts of working memory. Nature Neuroscience, 17 (3),
347–356.

Souza, A., & Oberauer, K. (2016). In search of the focus of at-
tention in working memory: 13 years of the retro-cue effect.
Attention, Perception, & Psychophysics, 78(7), 1839–1860.

Titsias, M. (2009). Variational learning of inducing variables
in sparse gaussian processes. In Artificial intelligence and
statistics (pp. 567–574).

