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Abstract

Humans localize sounds using a combination of binau-
ral and monaural cues. However, the location of a sound
remains ambiguous under many conditions. Because
sound localization is often used to guide behavior, rep-
resenting the uncertainty of a sound’s location is likely
to be critical to decisions about where and when to act.
However, little is known about whether humans represent
the uncertainty associated with a sound’s location and
whether any such representations are calibrated to the
accuracy of localization. To study these issues, we de-
veloped a new class of stimulus-computable models to
enable the representation of uncertainty. We optimized
the model for sound localization in natural conditions and
then compared its uncertainty estimates to those of hu-
mans.
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Introduction

The location of a sound in the world is not directly specified
in the sensory input, but rather must be inferred from acoustic
cues in the signals arriving at the two ears. These include in-
teraural time and level differences, as well as spectral shaping
by the outer ear (Blauert, 1997). However, such cues are of-
ten ambiguous due to (1) the geometric symmetry of the head
and ears and (2) corruptions from noise, reverberation, and
concurrent sources. Together, these factors introduce per-
ceptual uncertainty that affects spatial judgments and, conse-
quently, behavior (Obleser, 2025; Van den Berg, Zylberberg,
Kiani, Shadlen, & Wolpert, 2016).

Recent work has yielded deep neural network models that
rival humans in their ability to localize single sources (Francl
& McDermott, 2022; Saddler & McDermott, 2024). However,
these models are typically optimized for discriminative perfor-
mance and do not explicitly represent uncertainty in their spa-
tial estimates, making them ill-suited to account for trial-by-
trial human confidence. Models of uncertainty from other do-
mains have almost exclusively been limited to few-alternative
decision-making and so are not naturally adapted to real-world
perceptual problems (Li & Ma, 2020; Keshvari, Van den Berg,
& Ma, 2012; Kepecs & Mainen, 2012).

We developed a novel class of neural network models that
represent uncertainty by predicting full probability distributions
over an estimated variable. When applied to sound local-
ization, the model estimates a distribution over location from
binaural audio. When a sound’s location is ambiguous, the
model produces broader, or potentially even multimodal, dis-
tributions. To evaluate how these predictions relate to human
confidence, we conducted two experiments measuring human
listeners’ localization confidence in different conditions.

Figure 1: Computational framework for uncertainty-aware
sound localization | Binaural waveforms are filtered by sim-
ulated human ears (Francl & McDermott, 2022). The resulting
cochleagrams are transformed into a low-dimensional embed-
ding by a neural network model. We interpret this embedding
to represent the parameters (circular means {µ j} j=1..K , con-
centrations {κ j} j=1..K , and component weights {α j} j=1..K ) of
a K-component von Mises mixture that denotes a probability
distribution over sound location. The model reports perceived
source locations by sampling from this density.

Methods

Model and training details

Architecture and training objective. Binaural audio wave-
forms were processed by a gammatone filter bank (N f = 40
frequency channel bins with filters uniformly spaced between
40Hz and 20kHz on an ERBN scale, with bandwidths approx-
imating those of a healthy human ear). Filter bank outputs
were half-wave rectified and low-pass filtered with a 4kHz
cutoff frequency to simulate the upper cutoff of phase lock-
ing in the mammalian ear. The base model architecture was
adapted from prior literature (Francl & McDermott, 2022), re-
placing the readout layer to facilitate the likelihood-based train-
ing objective.

Model readouts were factorized to represent the parame-
ters of a bivariate (azimuth/elevation) von Mises mixture den-
sity (Figure 1) specified as

p(Θ|{αj,µj,κj} j=1..K) =
K

∑
j=1

α j
eκjcos(Θ−µj)

2πI0(κj)
, (1)

where Θ is the true location, {αj,µj,κj} j=1..K are neural net-
work outputs and I0(.) is the Bessel function of order 0. We
trained the model to perform heteroskedastic regression by
minimizing the negative log-likelihood of the true source loca-
tions for a scene.

Dataset generation. We used a room simulator to gener-
ate spatialized scenes in different rooms (Shinn-Cunningham,
Desloge, & Kopco, 2001) with the listener at random positions
and angles within a room. 1800 rooms were used in train-
ing and a different set of 200 rooms were used for validation.
Source locations were generated every 5◦ in azimuth (0◦ to
355◦) and 10◦ in elevation (0◦ to 60◦). Source distance was
varied from 1.4m to the furthest distance within the room.

Each training example consisted of a 1-second binaural au-
dio clip featuring a natural foreground sound from the GISE-



Figure 2: Human and model psychophysics reveal calibrated uncertainty estimation | a. Item-wise human-model alignment
in azimuth (top) and elevation (bottom) errors. b. Localization betting paradigm for Experiments 2-3. c. Histogram of model
uncertainties for 160 natural sounds. Highlighted stimuli were subsequently presented to human listeners in Experiment 3. d.
Absolute azimuthal error (left) and average bet (right) vs. azimuth, for Experiment 2 (top) and Experiment 3 (bottom).

51 dataset (Yadav & Foster, 2021), spatialized to a ran-
domly chosen room and location. Between 10 and 20 back-
ground sounds from AudioSet, spatialized to randomly sam-
pled locations within the same room, were added at an SNR
∈ [−15,+25]dB. We generated a total of ∼ 1.8M training
scenes and 500K validation scenes.

Human experiments

General overview. Participants heard sounds played from
a speaker array. The participant sat in the center of the array
and entered their responses through an iPad interface. To
test the models, we rendered the same stimuli from each
experiment in a virtual replica of the speaker array room.

Experiment 1. Stimuli consisted of 160 unique natural
sounds, each 1 second long. Participants were asked to
judge the location of the source (Francl, 2022).

Experiments 2 and 3. Participants localized the source and
placed a bet (from 1-5 cents) on their answer. Trial-level feed-
back was not provided. The model’s “bet” was a monotonic
function of the posterior entropy for that trial. Experiment
2: Stimuli were broadband noise, pure tones (600 − 4000
Hz), and narrowband noise (same center frequencies as the
tones; half octave bandwidth). Experiment 3: 10 high un-
certainty and 10 low uncertainty natural sound stimuli were
selected from the original 160 sounds based on model predic-

tions (Fig. 2c).

Results & Discussion

Experiment 1: Model validation. Model and human error
patterns were correlated across test stimuli (Fig. 2a). After
correcting for attenuation, the item-wise correlation between
model and human errors was r = 0.79, p < .001 for azimuth,
and r = 0.83, p < .001 for elevation.
Experiment 2: Uncertainty in humans is calibrated. Hu-
man confidence judgments varied systematically with stimu-
lus conditions, with lower bets on stimuli that elicited higher
localization errors (Fig. 2d). Confidence was lower for (1) pe-
ripheral sound sources and (2) pure tones compared to noise.
These patterns suggest that human confidence estimates
are well calibrated. The model showed similar condition-
dependent variations in uncertainty despite being optimized
purely for localization performance.
Experiment 3: Model predicts human confidence. Hu-
man accuracy and bets differed between the high- and low-
confidence stimulus groups of the model (Fig. 2c,d).
General conclusion Human confidence estimates for
sound localization are similar to those of a model whose un-
certainty representations are optimized for accurate localiza-
tion, indicating that human confidence is normatively appropri-
ate in this domain. The modeling framework provides a way
to investigate confidence in realistic perceptual problems.
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