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Abstract
Inhibitory control is a key component of executive func-
tions. While it primarily depends on the extended motor
network, early sensory processing of stimuli also plays
a critical role in inhibition. This study examined whether
deep neural networks could predict stop-signal task per-
formance from early stop-related EEG signals in 225 par-
ticipants, and whether including early go-related signals
would enhance prediction accuracy. The best-performing
model combined both go- and stop-related EEG data, re-
vealing that successful inhibition was associated with re-
duced sensory processing of go stimuli and enhanced
perception of stop signals. These results underscore the
dynamic interplay between go and stop-signal process-
ing and represent the first successful prediction of inhi-
bition outcomes using non-motor EEG signals.

Introduction
Response inhibition, the ability to suppress automatic or habit-
ual actions in favor of goal-directed behavior, is crucial for self-
regulation and supports a wide range of cognitive and behav-
ioral functions (Dillon & Pizzagalli, 2007; Hofmann, Schme-
ichel, & Baddeley, 2012). Impairments in this ability are asso-
ciated with conditions such as ADHD or addictive behaviors
(Chambers et al., 2009; Nigg et al., 2007).

The stop-signal task (SST) is widely used to study re-
sponse inhibition. It requires rapid responses to frequent
go stimuli and inhibition to infrequent stop signals, presented
shortly after the go stimuli (Logan & Cowan, 1984). Using
SST, electroencephalography (EEG) research has identified
key event-related potential components associated with in-
hibitory control: the N2, associated with conflict monitoring
and prominent in failed stops; the P3, linked to successful
inhibition and adaptive control (Huster et al., 2013; Wessel
& Aron, 2015); and the N1, enhanced in successful stops,
highlighting the role of early perceptual processing (Bekker
et al., 2005; Skippen et al., 2020). While brain–behavior
correlations provide valuable insights, they cannot determine
whether observed neural activity specifically reflects inhibitory
control or general processes occurring in the same time win-
dow (Gholamipourbarogh et al., 2023). Further, given the of-
ten non-linear nature of brain–behavior relationships (Reuter
et al., 2019), such studies may miss key dynamics. Re-

cent machine learning (ML) approaches address these lim-
itations by predicting stopping behavior directly from neural
data. For example, Rueda-Delgado et al. (2021) found that
features near the N2 and P3 time-windows predicted behav-
ioral measures of inhibitory control, while Gholamipourbarogh
et al. (2023) successfully used deep learning to distinguished
response execution from inhibition in a go/no-go task.

Most EEG-based ML studies on inhibitory control target late
post-stimulus activity, often within the P3 window. However,
in speeded tasks like the SST, this activity may reflect post-
response monitoring rather than inhibition itself (Gehring et
al., 1993). Only Bode and Stahl (2014) have predicted errors
before response execution, detecting them after motor initia-
tion in a flanker task. Additionally, White et al. (2014) showed
that faster go stimulus processing enhances stopping-related
activity, suggesting a close interaction between response initi-
ation and inhibition.

This study addresses both challenges by using deep neu-
ral networks to predict stopping behavior from EEG signals
related to go, stop, or both types of stimuli, excluding post-
response activity. Based on White et al. (2014), we hypoth-
esize that the model using both go- and stop-related signals
will perform best, as effective inhibition likely relies on the in-
teraction between these processes.

Materials and Methods
A total of 225 volunteers (113 F, 1 non-binary), aged 18–39
(M = 23.64, SD = 4.18), with normal or corrected-to-normal vi-
sion, were recruited from the general population. Participants
received verbal and written information about the study’s pur-
pose and procedures. The protocol was approved by the local
Research Ethics Committee, all participants provided written
informed consent and were compensated monetarily for their
time. During EEG recording, they performed a stop-signal
task with stop-signal delays adaptively adjusted using a stan-
dard tracking procedure (Verbruggen et al., 2019). The stop-
signal delay ranged from 100 to 400 ms in 50 ms intervals.

The EEG signal was continuously recorded at 256 Hz using
64 Ag/AgCl electrodes with preamplifiers (BioSemi Active-Two
system) and referenced online to CMS-DRL ground. Off-line,
the signal was re-referenced to the average of the two mas-
toid electrodes, band-pass filtered between 0.1 Hz and 40 Hz
using a Butterworth filter, and notch filtered at 50 Hz. The



Figure 1: Saliency maps illustrating the relevance of spatio-temporal signals for classifying inhibited and uninhibited stop trials.
The topographical plots display saliency maps at specific times during the segments.

data were segmented into 2-second epochs around go stim-
uli (-900 to 1100 ms) and aligned to the pre-stimulus base-
line from -900 to -800 ms. Eye blinks were removed using
the (Gratton, Coles, & Donchin, 1983) algorithm, and noisy
epochs were rejected through an automatic procedure using
AutoReject Python package (Jas et al., 2017).

Epochs were subsequently divided into go-locked and stop-
locked segments. To ensure that the input to the model
captured sufficient stimulus-related information while avoiding
contamination from stop-related activity in go segments and
response-related activity in stop segments, we excluded trials
in which the stop-signal delay was shorter than 150 ms or the
stop-response interval was shorter than 100 ms. Go-locked
signals were then extracted from -200 to 150 ms around the
go stimulus, and stop-locked signals from 0 to 100 ms around
the stop. After selection, participants had in average 31.40
inhibited trials (SD = 14.80) and 28.87 uninhibited trials (SD
= 7.97). We used the EEGNet architecture to classify inhib-
ited and uninhibited trials in both channel and source space.
EEGNet is a well-established deep learning model for EEG-
based brain-state decoding (Lawhern et al., 2018). The fol-
lowing parameters were used: F1 = 16, D = 2, F2 = 32, and
temporal kernel length = 64 (full specifications in Lawhern et
al., 2018). We created three models: the go model, based
on go signals; the stop model, based on stop signals, and the
go-stop model, based on concatenated go and stop signals.
Model performance was evaluated using subject-wise 5-fold
cross-validation. In each fold, five participants from the train-
ing set were randomly selected for early stopping validation.
The model with the lowest cross-entropy on the validation set
was saved after 50 epochs. Performance metrics: accuracy,
AUC (Junge & Dettori, 2018), recall, and specificity, were cal-
culated on the testing sets. Final results were obtained by
averaging the metrics across all five test folds.

Results

From the three created models, only the stop and go-stop
models yielded mean cross-validated accuracy and ROC val-
ues that exceeded chance level. The stop model achieved

moderate performance, with AUC values at 55.56%. How-
ever, its higher recall compared to specificity suggests a slight
bias toward detecting inhibited trials. In contrast, the go-stop
model demonstrated more balanced performance, with both
recall and specificity closely aligned, indicating better calibra-
tion. It also outperformed the other models in overall accuracy
and AUC (57.72%). Detailed results for all models are pre-
sented in Table 1. We used a saliency map approach (Ancona
et al., 2018) to identify key time points and channels contribut-
ing most to the model’s predictions, thereby highlighting neu-
ral activity relevant to inhibitory control. The average saliency
maps from the test folds are shown in Figure 1.

Discussion
The go-stop model, which integrates both go and stop signals,
outperformed the individual go and stop models. These re-
sults confirm the interaction between go process initiation and
inhibition in the stop-signal task, supporting the hypothesis
proposed by White et al. (2014). As expected, go-locked and
stop-locked activity within the first 100 ms time window were
the most discriminative between conditions, with reduced go
and enhanced stop activity in inhibited trials. Thus, our results
indicate that successful inhibition is associated with blunted
sensory processing of go stimuli and enhanced sensory pro-
cessing of stop signals. This study demonstrates the success-
ful prediction of inhibition outcomes from EEG data that are
not directly related to motor processes. Using a deep learning
approach, we show that early perceptual processing of both
go and stop stimuli is predictive of successful inhibition.

Table 1: Detailed results of the inhibited and uninhibited trials
classification task for the go, stop, and go-stop models.

Model Accuracy AUC Recall Specificity

M SD M SD M SD M SD

go 50.85 1.34 50.75 1.29 52.46 4.97 49.04 4.23
stop 55.65 1.18 55.56 1.13 58.01 4.17 53.12 3.12
go-stop 57.76 0.86 57.72 1.05 57.47 4.76 57.96 6.42
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