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Abstract 
Human perception flexibly extracts visual features 
depending on task demands. Here we show that 
sentence embeddings derived from natural language 
scene descriptions can guide convolutional neural 
networks (CNNs) to learn task-relevant visual 
features from images. Participants described 
complex real-world scenes in either a general 
manner or to describe the possible walking paths 
through the scene. Task-specific activation maps 
were generated from CNNs trained to predict these 
sentence embeddings. In a behavioral experiment, 
participants viewed masked images containing 
either high- or low-activation regions while 
performing categorization or navigation tasks. 
High-activation regions led to higher accuracy, and 
task-congruent regions improved performance. 
These findings demonstrate that natural 
language-derived embeddings can be used to 
identity task-relevant visual information, providing a 
novel means of linking goal-directing scene 
processing to diagnostic image regions. 
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Introduction 
A picture may be worth a thousand words, 

but which words depend on the task. Describing a 
kitchen to a blind person emphasizes different 
features than describing it to a contractor. Can such 
linguistic differences reveal task-relevant visual 
features? 

Understanding how task goals shape 
perception is a core challenge in cognitive 
neuroscience (Kay et al., 2023). Perception is not 
passive; it builds representations tuned to behavioral 

relevance (DiCarlo & Cox, 2007). Prior work shows 
that tasks alter both attention (Yarbus, 1935) and 
neural activity (e.g., Cukur et al., 2013), but 
identifying relevant image regions remains difficult. 
Reverse correlation (Gosselin & Schyns, 2001) is 
data-intensive, and CNNs only partially align with 
human strategies (Ebrahimpour et al., 2019). 
Crowdsourced maps suggest importance, but 
imagined relevance may not match actual feature 
use (Kim et al., 2017). 

Multimodal LLMs offer a promising 
alternative. These models better align with brain 
responses (Wang et al., 2023) and capture 
affordances missed by CNNs (Bartnik et al., 2024). 
Predicting LLM embeddings can yield more 
brain-like features (Doerig et al., 2022). 

Here, we used sentence embeddings from 
task-framed scene descriptions to train CNNs and 
extract task-relevant visual regions via 
deconvolution. We show that these regions vary by 
task and influence human behavior in aligned ways. 
This approach links language to perception, offering 
new tools to study how cognitive goals shape visual 
feature selection in both brains and machines. 

Methods 

Stimuli: 5582 photographs from 800 locations 
across 260 scene categories were described by 
4903 participants on CloudResearch Connect wrote 
either general or navigation-framed descriptions. 
Sentence embeddings: We created sentence 
embeddings from each description using the 
paraphrase-mpnet-base-v2 model from the sentence 
embeddings Python library (Reimers & Gurevych, 
2019). The resulting 768-dimensional embeddings 
served as input features for subsequent analyses, 
enabling direct comparisons between descriptions 
from different conditions. 



CNN Training: We trained two convolutional neural 
networks (one for each description task) to predict 
the sentence embeddings for the training set. Our 
training pipeline builds upon a ResNet-18 
architecture (He et al., 2016) pretrained on the 
Places-365 dataset (Zhou et al., 2017). The final 
fully connected layer of ResNet-18 was replaced 
with a 768-dimensional dense layer to map from raw 
pixels to the sentence embedding space. The 
models were trained using CosineEmbeddingLoss, 
which minimizes the cosine distance between 
predicted and true embeddings.  
Visualization: We used a gradient-based 
visualization approach adapted from Zeiler and 
Fergus (2014) to visualize the information learned 
from the sentence embeddings. We specifically 
highlighted layer4.1.conv2 (the final convolutional 
layer) due to its proximity to the sentence 
embeddings. 
Behavioral Validation: 60 participants performed 
either categorization or navigation 3AFC tasks. 
Stimuli revealed only the top or bottom 25% of each 
network's activation map. Performance was 
compared across activation strength and task 
congruence. 

Results 
The average cosine similarity between 

predicted and ground truth activations was 0.75 (test 
set: 0.72) for the description network, and  0.70 (test 
set: 0.67) for the navigation network. Both networks 
learned task-relevant language features because we 
observed lower cosine similarity between predicted 
and actual embeddings when we crossed tasks.  

We found that layer 4 activations differed 
across networks. Specifically, the activations for the 
navigation CNN were lower in the image plane than 
the others, reflecting the increased importance of 
this region for the task. By contrast, the general 
description CNN contained a horizontally elongated 
band of high activation concentrated in the image's 
central region and somewhat biased to the right.  

We analyzed trial-level accuracy using a 
generalized linear mixed-effects model (GLMM) with 
a binomial distribution and logit link (via the lme4 
package in R). Fixed effects included Task 
(categorization vs. navigation), Activation (high vs. 

low), and Task Congruence (congruent vs. 
incongruent), along with all two- and three-way 
interactions. A random intercept for participant 
accounted for repeated measures. 

The model revealed a significant main effect 
of Task (β = –0.74, SE = 0.064, z = –11.58, p < 
.001), with lower accuracy on navigation trials (44%) 
than categorization (59%). Performance was also 
higher with high-activation regions (55%) than low 
(48%; β = –0.29, SE = 0.064, z = –4.54, p < .001), 
indicating alignment between participant behavior 
and CNN-derived features. Accuracy improved when 
the model source matched the task (β = –0.15, SE = 
0.064, z = –2.31, p = .021), and a significant Task × 
Congruence interaction (β = 0.34, SE = 0.089, z = 
3.79, p < .001) showed this effect was stronger for 
categorization. No other interactions were 
significant, including the three-way interaction (β = 
–0.13, SE = 0.13, z = –1.04, p = .30). This pattern 
suggests that general descriptions may yield 
features more broadly useful across tasks. 

 
Figure: Behavioral experiment results 

Discussion 
CNNs trained on task-framed sentence 

embeddings learned distinct visual features that 
influenced behavior. Navigation-trained models 
emphasized ground-level regions, while 
general-description models captured broader 
semantic content. Each showed higher embedding 
alignment within its training domain. 

Participants were more accurate with 
high-activation regions, and task-congruent features 
boosted performance, especially for categorization. 
This suggests that language-guided training yields 
perceptually meaningful, task-specific features. 
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