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Abstract 

Evidence accumulation can continue after a choice is 
made to incorporate new evidence and inform subjective 
confidence ratings, but we do not know how this post-
choice evidence accumulation process differs from the 
one that informed the initial choice. Existing models 
disagree regarding whether the post-decision process is 
a continuation of the initial choice process or reflects a 
distinct one. In addition, current models disagree on the 
question of whether post-choice accumulation 
processes are subject to time-based or boundary-based 
stopping rules. We implemented these alternative 
mechanisms across four classes of models and fit them 
to human data from a task with a speed/accuracy trade-
off applied only to the post-decision confidence rating 
stage, via a deadline. Speed-pressure decreased 
confidence-RT, certainty, metacognitive accuracy, and 
changes-of-mind (CoM). The four classes of models were 
able to fit the data well, but Boundary-Based Stopping 
Rules fit the data better than the Time-Based Stopping 
Rules, as the latter were unable to replicate the pattern 
of decreasing certainty for slower confidence-RTs. 
However, the behavioural modelling did not conclusively 
favour one Boundary model over the other. We therefore 
compared the evolving Decision Variable with a neural 
marker of evidence accumulation, the Centro-Parietal 
Positivity (CPP), to further distinguish these two similar 
models. The Shared-process Boundary-based model 
was able to replicate qualitative effects of Certainty and 
CoM on the CPP, while the Distinct-Boundary model 
could not. We suggest that post-decision evidence 
accumulation is boundary-based rather than time-based, 
and shares information with the initial-decision process 
rather than being a distinct accumulation mechanism. 
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Introduction 

Many models exist that allow post-decision evidence to 
inform confidence ratings, often via an evidence 
accumulation process similar to the initial decision, but 
with different mechanisms for starting and stopping this 
process. A Time-Based Stopping Rule (Pleskac & 
Busemeyer, 2010), where post-decision accumulation 
continues for a set amount of time, can account for 
many patterns seen in human data but fails to replicate 
a negative relationship between confidence-RT and 
confidence-ratings. A Boundary-Based Stopping Rule  

which can collapse over time does capture this negative 
relationship (Herregods et al., 2023). However, these 
two classes of models can make very similar 
behavioural predictions. Additionally, models can differ 
in how they treat the start of the post-decision process; 
as a Distinct process from the initial decision 
termination, or as a Shared process which continues 
from where the initial boundary-crossing occurs. Again, 
these two processes can produce similar behavioural 
effects. Neural signals offer a way to disambiguate 
behavioural model mimicry. The Centro-Parietal 
Positivity (CPP) is a potential marker of evidence 
accumulation which shows a rise-to-peak activity before 
a decision is made, reaches a lower peak on slower 
trials (consistent with a collapsing-boundary), and 
scales with confidence ratings both before and after a 
decision (Grogan et al., 2023). Here we measured the 
CPP on a random dot motion task with a 
speed/accuracy trade-off induced solely at the post-
decision stage. We fit models with Time/Boundary 
Based Stopping Rules and Distinct/Shared processes 
to the behavioural data and used the CPP as a model 
validation to further disambiguate between these highly 
similar models (see Figure 1A). 

Methods 

We used a large trial-number, small-N design, 
collecting 2160 trials from 14 participants. Participants 
performed a random dot motion discrimination task with 
confidence ratings, and we manipulated the deadline 
(700ms or 3000ms) for the confidence rating to induce 
a speed/accuracy trade-off only at the post-decision 
stage. We fit four types of models to the data, which are 
visualized in Figure 1. 

Results 

The BIC greatly favoured the Boundary-Based Stopping 
Rules over the Time-Based (ΔBIC=782), with a smaller 
preference for the Distinct-process over the Shared-process 
(ΔBIC=274). All four types of models were able to replicate 
the overall confidence-RT distributions, and most of the 
speed/accuracy effects were captured to some extent. The 
Time-Based models could not replicate the decreasing 
certainty and accuracy for slower confidence-RTs (Figure 1B), 
while the Distinct-Boundary model was better at reproducing 
the speed-pressure effects on CoM and confidence, and the 
Shared-Boundary model was better at capturing the AUROC2 
difference. 
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Figure 1: A. The initial decision was modelled using a drift 
diffusion model, where noisy evidence accumulates with a 
certain drift rate (v) until hitting a collapsing boundary 
(controlled by u) with accumulation starting at the unbiased 
point a*z. (middle) All post-decisional models included 
parameters for the rate of accumulation (v2). In Time-based 
models, the time of stopping was determined by a mean 
deadline time (τ) with some variability (στ). In boundary-based 
models, the time of stopping was determined by collapsing 
boundaries, controlled by parameters related to boundary 
heights (a2up and a2down for the Shared variant, a2 and z2 
for the Distinct variant), and corresponding collapse rates 
(u2up, u2down). (Bottom right) Finally, in all models, evidence 
was translated into a six-points scale using a metacognitive 
noise parameter (σmeta) and five confidence criteria (c1 to 
c5). Non-decision components not displayed. (B) Confidence 
accuracy, confidence, certainty, and change-of-mind (CoM) 
probability as a function of confidence-RT (smoothed using 
loess regression). 

Given that the two Boundary models provided quite similar fits 
(ΔBIC=94), we validated them against a measure not included 
in the model fitting – a neural signature of evidence 
accumulation, the CPP. The Shared-Boundary model was 
better at reproducing the effects of Certainty and CoM on the 
CPP than the Distinct-Boundary model (Figure 2), capturing 
the growing effect of Certainty before the initial RT and the 
positive CoM effect after the initial response, which both 
remain until confidence RT. The Distinct-Boundary model had 
opposite directions of these two effects, as confirmed by time-
derived regression analyses. This suggests that the Shared-
Boundary model better captures the metacognitive processes 
in these decisions, as measured by the CPP. 

 
Figure 2: Observed CPP & Simulated Decision Variable.  
Panels show the effects of Certainty ratings (1=maybe, 
2=probably, 3=certain) or change-of-mind/CoM (0=no-CoM, 
1=CoM), in the lead-up to the initial-response (first and third 
rows) or the confidence-response (second and fourth rows). 
Columns show (A) Observed CPP and simulated absolute 
Decision Variables from the (B) Distinct-Boundary model and 
(C) Shared-Boundary Model. 

Conclusion 

We replicated previous effects of post-decision speed-
accuracy trade-offs on confidence ratings and extend 
them to a neural signature of evidence accumulation. 
Model fits greatly favoured Boundary-Based Stopping 
Rules over Time-Based ones, suggesting that post-
decision accumulation may be governed by 
accumulation-to-bound, like the initial decision process. 
Validation against a neural signature of evidence 
accumulation distinguished between the similar 
Shared- and Distinct-process models, with the Shared-
process Boundary model the only one able to account 
for effects of Certainty and CoM on the Decision 
Variable. 
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