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Abstract 
Epilepsy encompasses a set of complex, 
multifaceted disorders presenting a large panel of 
disease symptoms. A deeper understanding of their 
underlying disease mechanisms is likely to be 
required for the development of disease-modifying 
therapies (Gschwind et al., 2023; Lignani, Baldelli & 
Marra, 2020). Several forms of epilepsy are 
characterized by changes in gene expression 
profiles of neuronal networks that lead to 
significant alterations at the neuronal network and 
behavioral levels. In this study, we investigate the 
behavioral phenotype of a chronic epilepsy model 
by leveraging machine learning algorithms to 
analyze long-term video data of mice in naturalistic 
settings. We aim to identify behavioral markers 
beyond seizures and assess the impact of potential 
therapeutic treatments. Describing their behaviors 
in terms of behavioral modules will also allow us to 
better understand behavioral transitions and to 
capture correlations between neural pathways and 
behavior in healthy and pathological conditions. 
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Introduction 
Automated approaches based on computer vision have 
become important tools for disease models 
characterization and biomarker investigation. It allows 
us to study a wide range of naturalistic behaviors over 
long periods of time in a minimally stressing 
environment (home-cage). Here we applied two 
machine learning-based packages to video recordings 
of mice infused intrahippocampally with kainic acid 
(IHKA) to generate a preclinical model of temporal lobe 
epilepsy. This form of focal epilepsy is often difficult to 
control with medication; ~30% of patients do not 
respond to current pharmacological treatment and may 
require brain surgery. We evaluated the added value of 
behavioral quantification of this model over long periods 
of time and validated our pipeline on IHKA videos. This 
pipeline is currently being applied to other epilepsy 
mouse models, with the goal to combine it with in vivo 
calcium imaging and capture correlations between 
neural pathways and behaviors, thereby increasing our 
understanding of behavioral transitions and the neural 
pathways involved in different forms of epilepsy. 
 

Methods 
Videos were acquired using a top-view camera (1280 x 
1024 pixels), then normalized to 30 fps and 128 kbps 
using ffmpeg (version 4.2.2). 

We used DeepLabCut (Lauer et al., 2022; Mathis et 
al., 2018; Nath et al., 2019) (DLC, version 2.3), a 

package based on supervised machine learning, to 
generate keypoints on mice. 15 keypoints were labelled 
manually in an average of 10 frames per video, and a 
DLC model was trained using a training dataset of N=28 
videos (filtering on single animal videos) on a single 
GPU (Nvidia GTX 1080Ti). The keypoints generated 
were then analyzed using keypoint-MoSeq (Weinreb et 
al., 2024; Wiltschko et al., 2015; Wiltschko et al., 2020) 
(kp-MoSeq, version 0.4.7) to identify behavioral 
syllables, which are distinct, recurring patterns of 
movement that can be used to characterize and 
quantify the behavior of the mice. The keypoint-MoSeq 
model was trained using the same training dataset and 
8 keypoints (identified as properly detected in a semi-
automated analysis) using 2 GPUs (Nvidia GTX 
1080Ti). The pipeline was validated on a first dataset of 
4-hours videos (N=8) of IHKA and control mice (male, 
C57BL/6j strain), and on a second dataset of 6-hours 
videos (N=16) of IHKA mice (male, C57BL/6j strain) 
undergoing pharmacological treatment (Diazepam 2 
mg/kg N=8; Vehicle N=8). All statistical analyses were 
conducted in python 3.9 using scipy (version 1.11). 

Results 

Behavioral quantification in long video 
recordings 
DLC is a commonly used package to generate 
keypoints on mice and it has been extensively adopted 
in numerous laboratories. However, it is typically 
employed for either specific tasks or relatively short 
video recordings. The application of kp-MoSeq to 
identify behavioral syllables expands the range of 
possibilities to longer recordings. Those patterns of 
movement can then be used to characterize and 
quantify the behavior of the mice in naturalistic settings. 

In the first instance, we focused on extending the 
duration of the videos analysis. We reasoned that the 
analysis of a longer timeframe may decrease individual 
variability (fig. 1), such as inter-mice variability of 
circadian cycles. 

Figure 1 Comparing normalized CV for individual 
animals between 4-hour and 15-minute observations 

over time. CV: Coefficient of Variation. 



Pipeline validation 
We focused our pipeline validation on a well-
established model of temporal lobe epilepsy. This 
approach allowed us to validate our results by 
comparing them with published data (Gschwind et al., 
2023) on the same mouse model of epilepsy, while 
extending our period of observation to a few hours, 
better suited for home cage observations over a longer 
time frame. 

We confirmed the previously reported (Gschwind et 
al., 2023) findings of up and downregulated behavioral 
syllables in IHKA mice after different treatments (fig. 2). 
As syllables are identified by kp-MoSeq using an 
unsupervised approach, expert interpretation is 
required for the meaningful assessment of behaviors 
beyond simple measures such as keypoint 
displacement. The sequence or combination of multiple 
interpreted syllables is required for the identification of 
long and/or complex behavior. 
 

 

Figure 2 Comparative analysis of syllable usage within animal 3h before and 3h after vehicle and 2mg/kg 
diazepam injection in a cohort of IHKA mice. The red dotted line represents no change between syllable usage. 

Double asterisks (**) indicates p-values < 0.01 calculated using a Welch 2-tail t-test, p-value threshold of 0.05 was 
used; vehicle n=8, diazepam n=8.

Conclusions 
In this study, we successfully implemented a pipeline for 
the automated analysis of mouse behaviors in animal 
models of epilepsy. This pipeline leverages machine 
learning algorithms to analyze long-term video 
recordings of mice in naturalistic settings. 

We validated the models on our 2D videos and 
confirmed previously published findings (Gschwind et 
al., 2023) that were based on 3D videos. The 2-step 
approach we selected offers flexibility in our analysis 
and the possibility to use historical data, by providing 
keypoints and an intermediate representation of each 
individual animal. This feature also offers the 
opportunity to extend this analysis pipeline to multi-
animal video recordings. 

By comparing the behavioral syllable variability 
between short and long-term observations, we 
illustrated the added value of generalizing mouse 
models behavioral characterization over longer periods 
of time in naturalistic settings. Keypoint generation 
using DLC is by far the slowest computational step and 

currently the main limitation to multi-day analyses. 
Other avenues are currently being considered. 
Furthermore, we are also currently working to deepen 
the interpretation of the identified behavioral syllables. 

This behavioral characterization pipeline will next be 
applied to other epilepsy mouse models, over longer 
periods of time (multiple days), to analyze the usage of 
behavioral fingerprints across groups and explore the 
associations between behavioral transitions and 
seizures events. The implementation of those 
automated approaches looking at behavioral transitions 
offers the possibility to capture correlations between 
neural pathways and behaviors, to build a map of the 
brain’s trajectories in healthy and pathological 
conditions, and to better understand the mechanisms 
driving the disease and the ways to modify them. 
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