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Abstract 

Goal-directed decision making amidst an 

overwhelming stream of sensory input requires 

learning internal representations that capture a 

task’s underlying structure. Importantly, such 

internal abstractions enable generalization. 

Representing an object’s shape but ignoring its 

color, for instance, means that anything learned 

about a green triangle will generalize to red 

triangles. Here, we investigate this dynamic 

interaction of task representation learning and 

generalization. Human participants and artificial 

neural networks were trained with the same 

contextual reinforcement learning task. Analyses 

of human data reveal that participants learned an 

abstract task structure, which becomes 

detectable in the orbitofrontal cortex (OFC) after 

learning. Recurrent neural networks trained on 

the same learning curriculum exhibit similar 

abstractions of task representations over time. 

Notably, we find that the similarity structure of the 

networks’ internal task representations affects 

how weight updates after a single example alter 

network behavior and representations on other 

trials. The network’s progressing context 

differentiation in its internal layers hence leads to 

generalization of single experiences to other 

events within the same context. Ongoing work 

aims to gain a mechanistic understanding of 

model observations and contrast them with 

learning dynamics in the human brain. 

Keywords: decision making; reinforcement learning; 

fMRI; task states; task representation learning. 

Introduction 

Humans excel at making decisions to achieve task 

goals despite being faced with an overwhelming 

stream of information. This ability is commonly 

attributed to the brain’s capacity to distil an abstract 

representation of task-relevant components and their 

relations, forming a “cognitive map” or a “task state-

space” (Behrens et al., 2018; Niv, 2019). A key 

property of such representations is that they guide 

generalization of prior experiences to new, 

unexperienced, ones. For instance, a novice chess 

player may decide on moves in unfamiliar board 

configurations by generalizing from previous 

encounters according to how similar their internal 

representation of the current board is to previously 

seen boards.  

The exact task properties that facilitate effective 

learning and decision making depend on the task. 

Hence, task representations must themselves be 

learned, a “learning to learn” process. 

Computationally, this process entails the challenge of 

rapidly finding a transformation of high-dimensional 

inputs onto a reward-predictive low-dimensional 

space. Learning a useful transformation is a 

challenge for biological and artificial neural networks 

alike (Lake & Baroni, 2023; Radulescu et al., 2025; 

Zhang et al., 2020), yet its underlying mechanisms 

remain poorly understood. 

Here, we set out to investigate the dynamics of 

task representation learning and its interaction with 

generalization in the human brain and in artificial 

networks.   

Task and experimental design 

Participants (total N=62) completed the “Realtor task” 

across two fMRI sessions. On each learning trial, 

participants first viewed a client, followed by two 

house alternatives and then decided which house the 

client would prefer (Fig. 1, top row). Their decision 

was followed by numerical feedback (0-100) 

indicating the client’s satisfaction. The clients fell into 

two types based on a certain feature (e.g., whether 

they had glasses). The defining feature of the client 

type therefore provided context for deciding between 

the subsequent house alternatives. Participants 

therefore learned the house preferences of client 

types through feedback. Solving the task is 

challenging since, as in real life scenarios, the 

features of the clients and houses varied in their 

relevance for making correct choices. 

A critical component in the experimental 

design is the inclusion of estimation trials. During 

estimation trials, participants did not receive feedback 

but instead observed client-house pairs that are 

distinct from those shown in neighbouring learning 

trials. The same set of estimation trials was presented 

prior to and immediately after segments of learning 

trials (Fig. 1 middle and bottom row). This design 

enables us to track “mass representation learning”: 

how activity patterns for task items co-shift in 

response to feedback on a single, distinct, task item.  

Figure 1: Task trials and the experimental design 



Task abstractions in behavior and brain 

Behavioral modelling. We modeled successful 

participants' behavior to test whether they learned the 

true underlying task structure, rather than memorizing 

individual input-output mappings. To do this, we fitted 

decisions using linear approximation models 

assuming two alternative representations of task 

states. In the true model, a one-hot vector with 8 

nodes represented the true underlying task states. In 

contrast, the full model used a 32-node vector that 

preserved all possible client-house pairs, without 

merging irrelevant variations or splitting identical 

observations based on the prior context (i.e., client 

type). The models were optimized to minimize the 

negative log-likelihood between model predictions 

and participant choices. The true model significantly 

outperformed the full model (paired t-test, p<10−8, 
Fig. 2a), demonstrating that participants learned an 

abstract representation of the task rather than an 

elaborated input-output mapping. 

Preliminary fMRI results. Correlating single trial 

activity patterns from identical task states revealed 

that abstract state representations emerged in the 

OFC after learning (paired t-test, p=0.0005, Fig. 2b), 

in accordance with previous findings (Schuck et al., 

2016). Further analyses will address anatomical 

specificity of the effect and its time-resolved 

evolution.   

 
Figure 2. Behavioral modelling and preliminary 
fMRI results (a) Linear approximation model fits per 
trial (left) and averaged across trials (right, N=45 
successful learners). (b) Mean correlations between 
single trial activity patterns in the OFC corresponding 
to the same task states prior versus after learning. 

Dynamics of task abstractions in 
artificial networks 

Neural network model. To contrast artificial with 

human learning, we first analyzed learning dynamics 

in a simple recurrent neural network composed of two 

hidden layers: a recurrent layer (64 units, tanh) 

followed by a fully connected layer (32 units, tanh). 

The network receives as input two binary vectors 

presented consecutively, the first indicating the client 

and the second indicating house features, and 

outputs a value estimation for each house. On each 

trial, the network receives feedback on the chosen 

house which is then used to update its weights via 

gradient descent optimization and back-propagation.  

“Mass representation learning” analysis. To 

investigate how receiving feedback on a single item 

shifts representations of other task items, we 

recorded hidden representations for all possible items 

prior to and immediately after each learning trial. 

Initial results demonstrate that a single weights’ 

update triggers a coordinated shift in all hidden 

representations pertaining to the same context (Fig. 

3b). A control analysis ruled out the possibility that 

this effect was due to shared context-selectivity of 

hidden units. This dynamic was also observed in the 

network behavior, as increased performance for all 

task items in the same context that was given 

feedback (Fig. 3c).    

 
Figure 3. Neural networks simulations (a) Post 

learning hidden representations (recurrent layer) in a 

representative network.  Each circle is a trial with a 

unique visual input. Different color-codes visualize 

encoded dimensions. (b) Mean pairwise correlations 

of change vectors induced by single feedback 

updates, averaged separately across pairs of task 

items from the same/different contexts (left), and the 

full pairwise matrix averaged across all learning trials 

(right). (c) GLM estimates of the impact single 

feedback has on performance in the same versus 

different context as the item given feedback. 

Individual circles mark the different networks, each 

trained with a curriculum of a specific participant.  

Outlook 

Ongoing work focuses on analyzing mass 

representation learning dynamics in fMRI data, 

comparing brain signals with neural network 

simulations and predictions derived from their 

analytical solutions. The results can advance our 

understanding of how efficient learning is achieved in 

the human brain, enabling generalization from single 

events to suitably similar future situations. 
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