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Abstract
Human memory exhibits a diverse range of well-
documented phenomena, including forgetting curves, in-
terference effects, and schema-based distortions. While
existing computational models attempt to capture as-
pects of these phenomena, they are often evaluated in
isolation using task-specific experimental setups, limit-
ing their generalizability and comparability.

We develop a unified benchmark for systematically
evaluating memory models based on their ability to re-
produce human-like memory phenomena. Our approach
includes: (1) analyzing and formalizing a diverse set of
memory phenomena in generalizable terms, independent
of specific experimental paradigms, and (2) developing an
evaluation framework that tests these phenomena within
a common environment. This allows to test all phenom-
ena on the same memory-augmented agent.

We test different memory models on schema-based
distortion, memory conjunction errors, repetition and se-
rial position effects. We find that none of the tested mem-
ory models qualitatively matches human memory behav-
ior on all these phenomena, and we identify promising
directions for future research on memory models.
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Introduction
Human memory is influenced by various factors that affect
how experiences are encoded, stored, and retrieved. These
include contextual cues, prior knowledge, and the limitations
of storage and retrieval processes. These factors give rise
to well-documented memory phenomena, such as forget-
ting effects (Kahana, Diamond, & Aka, 2022), structural bi-
ases (e.g., schema-based distortions (Carmichael, Hogan, &
Walter, 1932; Alba & Hasher, 1983; van Kesteren, Ruiter,
Fernández, & Henson, 2012)), associative errors (e.g., mem-
ory conjunction errors (Kroll, Knight, Metcalfe, Wolf, & Tulving,

1996; Rubin, Petten, Glisky, & Newberg, 1999)), and tempo-
ral dynamics (e.g., recency (Murdock Jr., 1962) and contiguity
effects (Kahana et al., 2022)). Understanding these effects is
essential for developing computational models that accurately
reflect human memory.

Despite extensive research in psychology and neuro-
science, computational memory models often focus on a nar-
row subset of these phenomena, leading to specialized mod-
els that fail to generalize across different tasks. To address
this, we introduce a benchmark designed to systematically
evaluate memory phenomena in artificial agents using a com-
mon framework for testing across multiple tasks.

Methods
To evaluate memory phenomena in artificial agents, we de-
sign a framework in which a model observes sequences of
events and produces outputs to solve a variety of tasks re-
quiring memory. Although text- or image-based representa-
tions of events seem like natural choices, both present signifi-
cant limitations. Text’s discrete nature prevents testing certain
memory phenomena involving distortion, while image-based
environments involve complex perceptual processing that can
obscure the core memory mechanisms under investigation.
Both modalities are also constrained by high computational
costs.

To address these limitations, we use generated event se-
quences embedded in a continuous vector space. This ap-
proach allows for controlled variability and precise manipu-
lation of event similarity and structure, enabling systematic
evaluation of memory phenomena. Our framework is com-
putationally efficient, flexible, and scalable. It supports both
supervised and reinforcement learning, and it enables simple
sequence parsing for non-trainable models.

Event generation
Events are generated from a vocabulary that stores schemas
and their representations in [0,1]n, as depicted in Figure 1A.
When generating an event, a schema is selected, either ran-
domly or following some sequence structure, and Gaussian



Figure 1: Event representation and task design. A. A vocabulary stores a list of schemas and their vector representation. When
generating an event, a schema is selected and Gaussian noise is added. Special tokens include responses (’YES’, ’NO’, ’-’)
and task instructions (’FREE RECALL’, ’BEFORE’, ’RECOGNIZE’, ’?’). B. During training, sequences of events are shown to the
agent, followed by task instructions and output prompts. The expected outputs depend on the task and the event sequence. Any
permutation of ’A’, ’B’, ’C’, ’D’ counts as correct in ’FREE RECALL’ training.

noise is added to introduce variability. The vocabulary also
includes special tokens for task instructions, ensuring consis-
tency across different memory tasks.

Training tasks
Training tasks consist of sequences of events, followed by task
instructions. All inputs and outputs are expressed in [0,1]n.
The benchmark includes various tasks designed to develop
the memory agent’s capabilities without explicitly training on
the experiments used to assess memory phenomena. Exam-
ples of training tasks are presented in Figure 1B.

Phenomena testing
The benchmark assesses models based on their ability to
qualitatively replicate human-like memory phenomena. Test-
ing tasks follow the same format as training tasks but are
specifically designed to assess particular memory phenom-
ena. We currently focus on six key effects:

• schema-based distortion: recalled events shift toward
high-density regions of the event space. We assess this
in ’Recall before’ test sequences.

• memory conjunction errors: false recognition of events
that combine features of previously observed events. We
assess this with ’Pair recognition’ test sequences.

• recency: in free recall and recognition, recent events are
more likely to be correctly recalled.

• primacy: in free recall, events in the beginning of the se-
quence are more likely to be recalled.

• contiguity: in free recall, temporally adjacent events tend
to be recalled together.

• repetition: in free recall, repeated events are more likely to
be recalled.

Each model is evaluated in multiple trials, and the perfor-
mance is measured using statistical tests that determine how
significantly each effect appears above the chance level.

Results

So far, we evaluated existing models on our benchmark, in-
cluding a temporal context model (CMR, (Polyn, Norman, &
Kahana, 2009), using the distributed implementation available
here), a transformer (Vaswani et al., 2017), recurrent neural
networks (LSTM, (Hochreiter & Schmidhuber, 1997), xLSTM
(Beck et al., 2024) Mamba (Gu & Dao, 2024), DNC (Graves,
Wayne, Danihelka, et al., 2016)), and a variational autoen-
coder (VAE)-based model (Kingma & Welling, 2013), inspired
by recent work on generative human memory modeling (Nagy,
Török, & Orbán, 2020; Fayyaz et al., 2022; Spens & Burgess,
2024). VAEs focus primarily on encoding and decoding, lack-
ing the capacity to solve the complex tasks in our benchmark.
To address this, we paired the VAE with a simple oracle agent
that always produces the correct output, enabling us to as-
sess whether the VAE component captures relevant memory
phenomena.

Table 1 summarizes the statistical significance of each
model’s ability to replicate key memory phenomena described
in Phenomena testing. The CMR model, designed for free
recall tasks, is limited to that context and cannot generalize
to other settings. Recurrent neural networks are more flexi-
ble but only exhibit a subset of the memory phenomena. The
VAE captures schema-based distortion but cannot be directly
applied to all tasks. Overall, while some models captured spe-
cific effects, none fully reproduced human memory across all
tested phenomena.

Conclusion

Our unified benchmark systematically tests memory effects
across different tasks, providing a framework for assess-
ing computational memory models. So far, we tested three
representative types of memory models from different fields
of memory research (recurrent neural networks: machine
learning, CMR: computational model of classical lab experi-
ments, VAE: computational model of generative memory), and
showed that none of these models can replicate all the tested



Table 1: Statistical evidence for human-like memory phenomena in artificial agents. For each model, we report the proportion of
100-sample simulations in which effects are statistically significant (p < 0.01). The symbol ”na” indicates that the model cannot
be trained or evaluated on the corresponding task.

CMR VAE-based Transformer LSTM xLSTM Mamba DNC

SB distortion nan 1.0 1.0 0.02 0.02 0.01 0.75
Conjunction errors nan 0.0 1.0 0.85 0.86 0.8 0.74
Recency (recognition) nan 0.0 0.01 0.0 0.0 0.07 0.0
Recency (free recall) 1.0 0.0 0.0 0.0 0.0 1.0 0.46
Primacy 0.81 0.0 0.0 1.0 1.0 0.0 1.0
Contiguity 1.0 0.01 1.0 1.0 1.0 1.0 1.0
Repetition 0.12 0.0 1.0 1.0 1.0 0.79 1.0

memory phenomena, indicating that we are lacking a unified
model of human memory. During the upcoming months until
the CCN conference, we will expand the benchmark to include
additional memory effects, evaluate more sophisticated mod-
els, and introduce more training tasks to develop generalized
memory representations.
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