Disentangling belief and strategy in natural visual search
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Abstract

Our beliefs and strategies are not always aligned. For ex-
ample, in visual search, an alighed strategy would be to
choose to look where one believes the target to be (be-
lief maximization). However, previous studies using sim-
ple stimuli have found that human search performance is
comparable to an ideal observer which maximizes infor-
mation (Najemnik & Geisler, 2009), a strategy which can
sometimes select gaze to locations where little is known
instead of where the target is believed to be. In naturalis-
tic settings, however, visual search poses additional chal-
lenges; for example, targets can take on many possible
appearances, and object affordances can suggest actions
such as reaching, which may influence gaze strategies.
While widely used predictive models of visual saliency
(Itti & Koch, 2001; Droste, Jiao, & Noble, 2020; Kiimmerer,
Bethge, & Wallis, 2022; Ding et al., 2022; Hosseini, Kaze-
rouni, Akhavan, Brudno, & Taati, 2024; Yang et al., 2024)
have achieved impressive accuracy in predicting human
fixations from image features, they do not model be-
lief or strategy. Moreover, these models are not norma-
tive as they do not specify the ideal criteria that can be
compared to human performance, prohibiting a princi-
pled way to assess optimal belief propagation and visual
search strategy. To address these challenges and char-
acterize the gaze selection strategy, we generalized an
ideal observer model (Najemnik & Geisler, 2005) to nat-
ural images with an explicit modular structure of belief
and strategy. Across a publicly available dataset (COCO-
search18) and a dataset we collected, we found that es-
timated strategies do not align with the beliefs, deviat-
ing from an intuitive, maximum-seeking strategy. Fur-
thermore, we explicitly tested whether people’s choice of
eye movements matches their beliefs using a novel gaze-
contingent paradigm, and we found that where people
shift their gaze to and where they believe the target to
be can differ substantially. Taken together, these results
suggest that people tend to prioritize information-seeking
over belief maximization in naturalistic visual search.
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Methods

Template matching. In signal detection theory, the opti-
mal signal for detecting the unknown target location is given
by template matching (Green, Swets, et al., 1966). Targets
in natural scenes can have a multitude of different appear-
ances making simple template matching impossible. Instead,
we used features from CLIP-ViT (Radford et al., 2021) and
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Figure 1: A normative framework that explicitly separates be-
liefs and gaze selection strategies in natural visual search.

modeled template matching as the cross-correlation ¢ be-
tween the target text feature (in RX) and spatial features (in
RE*WxK) The template responses were spatially normalized
as u, = zscore(c¢) € R¥*W and constant in a trial.

Optimal belief updating. A foveated observer should be con-
strained by their visibility, and we model such constraints with
additive noise increasing with eccentricity. Optimal belief up-
dating of the ideal observer, knowing their own visibility con-
straints, is given as Bayesian posterior updating (Najemnik &
Geisler, 2005) about the target position x for each fixation or-
der t in a given scan path yy.,
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where the posterior probability given the fixations history y;
up to order ¢, p(x|y<;) is proportional to the product of the
posterior before the last fixation p(x|y<,—1) and the sensory
evidence at 7. v, =y, x¢ defines the visibility at the (r — 1)
gaze point via the cross-correlation (x) with a trainable visibility
kernel ¢. Gaze position is selected from the softmax (o) of the
cross-correlation of the current posterior p(x|y~,) with a policy
kernel 6 (Butko & Movellan, 2008).

Gaze selection strategy. Optimal gaze selection strategy de-
pends on the goal that we assume for the observer. Previ-
ous strategies include selecting the maximum of the current
posterior (Maximum-Seeking, MS, e.g., Wolfe (1994)) or se-
lecting the location predicted to minimize posterior entropy
(Information-Seeking, IS). It can be shown that the MS strat-
egy corresponds to a Dirac delta policy kernel 6 (Butko &
Movellan, 2008), and the IS corresponds to the policy kernel
proportional to ¢ (Najemnik & Geisler, 2009).

Training. We trained the model parameters ¢,6 by maximiz-
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Figure 2: Normative modeling shows gaze selection deviates
from maximum-seeking. a, Search tasks experiment struc-
ture. b, Cross-validated model performance (information gain,
Kimmerer et al. (2015)) compared to the uniform baseline. ¢,
Fits to IS and MS models, along with recovery fits from sim-
ulated gaze data of the fitted IS and MS models. d, Visibil-
ity and policy kernel estimates from fitting to COCO-search-
18 (target-present) human data (top row) and estimates from
fitting to simulated gaze data of IS and MS models (bottom
rows). e, Comparison of the estimated kernel widths to the
theoretical relationship of IS and MS searchers.

ing the per-fixation log-likelihood, next-fixation prediction goal.

1 1 &
L:E[T'IOgP(YI:T)} =E T'ZIng(Yt|Y<t)] (3)
t=1

with fixation length 7. We approximate L via teacher forcing
(Jordan, 1986), by sampling the posterior updates.

L~E

1 T
T Zlogp(wﬁ(xyq))] (4)
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Results

Normative model accurately predicts gaze positions

To test whether the normative models can accurately account
for the human fixations, we collected human visual search
data with EyeLink-1000 in saliency-controlled naturalistic im-
ages (“Steer-search” dataset, ngupject=13, n4ia1=400, Fig. 2a).
We cross-validated the model’s prediction accuracy on both
the steer-search and COCO-search18 datasets (Yang et al.,
2020) and the models outperformed the uniform baseline in
per-fixation log likelihoods (Fig. 2b).

Estimating gaze strategy via normative modeling

To infer the gaze selection strategy, we imposed the known
relationship between visibility kernel (¢) and policy kernel ()
in MS and IS searchers. Across datasets, MS models yielded
higher validation log-likelihoods, supported by the recovery of
MS and IS model fits within our framework (Fig. 2c). To fur-
ther assess the strategy, we compared the widths of ¢ and 6.
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Figure 3: A gaze-contingent paradigm reveals a dissociation
between belief and fixation selection strategies. a, Task struc-
ture. b-d, Example participant’s locations of first fixations and
click (b), control fixations and click (c), and first fixations in
a control (directly-look) task (d). e-g, Population merged fixa-
tion points (first and control fixations and control task), aligned
to the click locations. Red contour denotes the half-maximum
of the Gaussian component in the Gaussian+uniform fit. h
Click-aligned kernel widths (Gaussian determinant) compared
to normative model policy kernels in Fig. 2.

Theoretically, MS observers use an infinitely narrow 0 that al-
lows the peak-selecting of posterior belief, while IS observer
use 0 shaped like ¢, which allows selecting fixations further
from the maximum points. Simulations confirmed that recov-
ered policy kernels matched these expectations (Fig. 2d).
Following this rationale, we fitted human data with Gaussian-
parameterized ¢ and 0 and found their width parameters were
approximately matched, consistent with IS predictions and de-
viating from the constant-width MS baseline (Fig. 2e).

Estimating gaze strategy via behavior paradigm

To explicitly characterize the gaze selection strategy, we ana-
lyzed the relationship between initial saccadic intentions and
target beliefs by designing a gaze-contingent paradigm using
the same stimuli as Steer-search data (nsubject=6, Mria=200;
Fig. 3a). Participants viewed an image, which disappeared
upon saccade detection, and clicked where they believed the
target was. Misalignment between the initial saccade choice
and the click indicates exploratory behavior, using their sac-
cade to scan an area even if they do not necessarily believe
the target to be, while alignment suggests the MS strategy.
We compared first saccades to the “control saccade” (final
saccades before clicking) and a “control task” where partici-
pants directly fixated and clicked on simple red-dot target im-
ages (Figs. 3b-d). Saccade endpoints were aligned by cen-
tering them on click positions to evaluate the dispersion of the
strategy kernel (Figs. 3e-g). The estimated strategy matched
the normative model’s policy kernel width (Fig. 3h), deviating
from the controls, together supporting that the human gaze
selection deviates from maximum-seeking.



Conclusions

We tested whether human fixations in natural visual search
reflect a strategy of belief maximization or information seek-
ing, and found converging evidence that people’s behaviors
matched information-seeking policies. Taken together, these
results suggest that people tend to prioritize information-
seeking over belief maximization during natural visual search.
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