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Abstract
Mice are natural navigators, capable of few-shot learn-
ing in complex environments. Here, we explore how their
performance in maze navigation can serve as a bench-
mark for comparing learning across species and artificial
agents. We tested human participants on a virtual binary
maze game adapted from a prior mouse study and found
not only similar performance, but also striking parallels in
learning dynamics. Like mice, humans rapidly optimized
reward acquisition, exhibited sudden insights about the
maze structure, and showed knowledge of the path home
from their very first maze incursion. We then used this
embodied navigation task to compare AI agents with both
species. We showed that two canonical agents — a Deep
Q-Learning (DQN) and a Large Language Model (LLM) —
were outperformed by the biological learners. These re-
sults highlight the potential of naturalistic learning tasks
for cross-species comparisons, and expose challenges
and opportunities for advancing AI.
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Introduction
Moving from less to more desirable locations is among the
earliest challenges nervous systems evolved to solve (Sterling
& Laughlin, 2017), making navigation a natural task for com-
paring performance across species. Prior work has compared
mice and humans in open environments with global beacons
and no walls, using reinforcement learning models to capture
their behavior (de Cothi et al., 2022). Yet, real-world environ-
ments often feature constrained movement and limited visual
cues, such as underground burrows for mice or urban grids for
humans. To address this, we tested humans and AI agents in
the binary maze proposed by Rosenberg, Zhang, Perona, and
Meister (2021). Their study showed that behaviorally naı̈ve
mice could quickly learn and memorize reward paths in a sym-
metric and complex environment complete darkness, a test
focused on memory and spatial reasoning.

We adapted this task to a virtual maze (Fig. 1) for hu-
mans and AI, applying a restricted field of view to replicate
the mouse’s tactile-only experience. Humans demonstrated
similarly rapid learning within one hour — matching mouse
performance and timescale — whereas traditional paradigms
like 2AFC show big disparities (days for mice vs seconds for
humans). At last, while most current AI benchmarks like ARC-
AGI (Chollet, Knoop, Kamradt, & Landers, 2025) focus on
human-level reasoning, we show that even achieving mouse-
level performance in the binary maze is challenging. We
propose complex-maze navigation as a cross-species bench-
mark for spatial reasoning in biological and artificial agents.

Experiments
We collected data on humans and AI agents in the maze and
compared to mice data from Rosenberg et al. (2021).
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Figure 1: The Binary Maze. A. Bird-eye view of the original
binary maze for mice from (Rosenberg et al., 2021) (A1), and
the virtual binary mazes we developed for humans (A2) and
AI models (A3). B. Example of the experience of a human
subject in the virtual maze going through a corridor with a re-
stricted field of view (B1) and finding the reward location (B2).

Human Subjects

Human participants were recruited via Prolific and completed
the experiment remotely using standard first-person game
controls. Maze speed was set to 1.5 tiles/s, and field of view
was limited to 1.5 tiles ahead (Fig. 1) to match mice navigating
in the dark. Subjects received monetary rewards for collect-
ing virtual rewards placed at the same location as the water
port in the original experiment and at the home chamber. The
extra home reward was needed to motivate the homing be-
havior, which mice do intrinsically for food and safety. Subjects
could only collect the rewards if they alternated between them,
which required navigating the maze. Like the mice, they were
not trained in any maze navigation tasks prior to the behavioral
test, and were not informed of the reward contingency.

Humans achieved similar in-maze reward collection in 1h to
mice (humans: 16.4±10.0, mice: 18.6±5.4). Moreover, 30%
of both species showed the previously reported sudden insight
(5/17 humans, 3/10 mice), a discontinuity in the learning pro-
cess after which navigation becomes more efficient (Fig. 2).
Human reward curves were steeper, driven by more exploita-
tive behavior. Unlike mice, humans refrained from exploration
after learning the path to reward, and thus did not show in-
crease in long direct paths from within the maze to reward.
We also found in humans the asymmetry in learning the paths
to reward and back home reported in mice (Fig. 3), suggest-
ing humans retained home-location information while explor-
ing. On their first maze bout, both species reached the reward
significantly slower than they returned home (mice: 8.1 min
vs. 4.5 min; humans: 6.4 min vs. 1.8 min). A key behav-
ioral difference was that some humans adopted wall-following
strategies (Fig. 2), which mice did not. Post-experiment ques-
tionnaires revealed this came from prior knowledge of maze-
solving heuristics, which slowed reward collection.
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Figure 2: Humans show Rapid Learning and Sudden In-
sight. A. Example of an early (A1) vs late (A2) bout of a
human that had the sudden insight. B. A late bout from an-
other subject that stuck to wall following. C. Example results
from a single human (C1) and mouse (C2), with all cumulative
rewards, and direct long paths (> 6 junctions) from within the
maze to reward and to control end nodes. D. Cumulative Re-
wards for all all humans (D1) and mice (D2). E. Cumulative
long paths to water for all humans (E1) and mice (E2).

AI Agents

To test blind AI agents, we created an environment with only
local observations: the objects in front, behind, left, and right,
classified as wall, reward, or empty. Actions included stepping
forward/back or turning 90◦. Inputs were encoded as one-hot
vectors for the DQN (Mnih et al., 2013) and as text prompts
for the LLM (OpenAI o1-mini) (Jaech et al., 2024). When
given only local observations, neither agent collected any re-
ward, performing much worse than humans and mice under
the same conditions. After augmenting input with positional
coordinates and orientation (emulating path integration), the
DQN learned the optimal path after 100,000 steps. The LLM
collected a few rewards within 600 steps, still below average
biological performance (Fig. 4) within a similar time frame.
Previous work has explored the navigation abilities of LLMs
(Martorell, 2025) and even blind RL agents (Wijmans et al.,
2023), but never in direct comparison to nonhuman animals.

This task also poses computational challenges for LLMs.
They require full input-output history to support in-context
learning, hitting input token limits at 600 steps that force a hard
limit in experiment duration. Runtime and price are also high
for an LLM with long prompts: running 600 steps on OpenAI
o1-mini took ∼7h and cost $15. By contrast, a small DQN can
consistently solve the maze after 100,000 steps, which takes
one minute on a single GPU.
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Figure 3: Faster homing in humans vs. mice Time in maze
during outbound vs. homebound bouts. Both species re-
turned home faster than they reached the reward, even on
the first attempt.

Conclusions and Further Directions
Our key findings are the surprisingly similar learning patterns
in mice and humans, including rapid reward acquisition and
sudden insight, and their contrasting exploratory tendencies.
Future directions include more immersive environments for
humans, like virtual reality or real mazes. We also show that
naturalistic navigation tasks can be a unifying learning bench-
mark across species and AI agents. We propose that navi-
gation with quantitative results from humans and other animal
species can be used as a spatial reasoning benchmark for AI
agents, and we provide initial results with two models. Our
results are limited in the diversity of agents so future work will
expand the testing to different architectures. Different frame-
works to adapt the 3D maze task to text-based LLMs that are
more computationally efficient must also be tested. Further-
more, the current version of the maze can be easily solved
by algorithms that exploit prior knowledge about its grid-world
discrete nature, like Dyna (Sutton, 1991), which limits their
utility for public benchmarks. Future work will also introduce
continuous, noisy environments that better reflect real-world
navigation challenges, and should only be solvable by artifi-
cial agents capable of performing equally well if deployed in
novel real world environments.
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Figure 4: AI vs Biological Agents. Cumulative rewards of
DQN and LLM with path integration vs humans and mice.
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