Predictions emerge in neural networks trained to perceive Bach’s music
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Abstract

Predictive processing proposes that the prior knowledge
relevant for inference is compressed into a prediction on
the immediately future states. Here we inquire whether
neural networks trained to infer the current latent state in
musical sequences develop a set of internal predictions
on what comes next.

We used noisy tokenized Bach compositions as sen-
sory inputs and trained RNN as models of neural circuits.
We first trained the networks to infer the current latent
state (token of the composition without noise) given a
stream of observations (tokens of the composition with
noise). After the training, we inspected whether the in-
ternal states of the network stored predictive information
on the next token. To do this, we fitted a linear readout
from the hidden states of the network optimized to pre-
dict the next latent state. To ensured that the predictions
were stored in the network and not computed by the lin-
ear readout, we compared the predictive performance of
the network with that of a linear network trained to predict
the next latent state based on the current latent state.

The results confirm that neural circuits optimized to
perceive the current state learn to predict future sen-
sory input, suggesting that predictive capabilities emerge
as a natural consequence of such optimization. These
findings offer computational evidence for predictive pro-
cessing and provide insights into how biological systems
might compress their prior knowledge and use it to navi-
gate in noisy environments.
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The brain makes use of its prior knowledge to accurately
infer the state of the external world from noisy and ambigu-
ous sensory information. Predictive processing proposes that
the prior knowledge relevant for inference is compressed into
a prediction on the immediately future states (Friston, 2003;
Aitchison & Lengyel, 2017). The sensory input is then com-
bined with the predictions using Bayesian believe updating.
Although this strategy is optimal when inferring latent states
from simple stochastic systems, predictions might not be use-
ful when inferring latent states from more complex generators
like music or language.

Here we inquire whether neural networks trained to infer the
current latent state in musical sequences develop the capacity
to predict what comes next. If that was the case, this would

be a strong indicator that, even when the generators are too
complex to perform optimal inference using predictions, neural
circuits may still rely on predictions to infer the state of the
external world.

Methods

We used noisy tokenized Bach compositions as sensory in-
puts. A latent token x; represented the actual note or chord
of one of Bach’s composition at time ¢ as a multi-label one-
hot encoding (Figure 1A, red barplot). Observation tokens y;
were sampled from a Gaussian distribution with mean x; and
a scalar-matrix variance (Figure 1A, yellow barplot).

We used recurrent neural networks (RNNs) as models of
neural circuits. RNNs were first trained to infer the latent token
x; based on the series of noisy observations y;.; (Figure 1A).

Networks were trained to minimize the mean binary cross-
entropy (BCE) across all tokens in each sequence. We trained
168 RNNs with a varying number of hidden units (2 to 256)
and observation noises (standard deviation between 1073 and
2.0).

To measure whether the network was exploiting contextual
information to infer the latent states, we compare the network
performance with that of a baseline model (a one-step feed-
forward network with the same number of hidden units as the
RNN) trained on the same loss and receiving as inputs only
the current observation y;.

After the training, we inspected whether the internal states
of the network stored predictive information on the next token.
To do this, we fitted a linear readout (Figure 1A, blue lines)
from the hidden states of the network optimized to predict x; 1
after the network had processed yi..

To ensure that the predictions were stored in the network
and not computed by the linear readout, we compared the
predictive performance of the network with that of a linear net-
work trained to predict x;4; based on x; (low-bound Marko-
vian model). Our reasoning was that, if predictions are driven
solely from the internal states of the network, the accuracy
should be lower or equal to that of a linear network that takes
as inputs the actual x;.

Input tokens were derived from a corpus with 74 Bach com-
positions in MIDI format. Each composition was converted
into a sequence of tokens, where a new token started every
time a single note would change in the composition. Loud-
ness and duration information was disregarded so that each
token represented either a single note or a chord. Tokens
were further compressed into a chromatic representation of
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Figure 1: A) Training architecture and strategy. The se-
quences of latent variables x;., are multi-label one-hot encod-
ing derived from Bach’s compositions. Observations y, are
noisy observations of the latent variables x;. The networks
were first trained to minimize binary cross-entropy (BCE) be-
tween the target x; and the output of the network, which is
assumed to encode p(x;|y;;). After training, a linear readout
from the network states is trained to minimize BCE between
the next target x; 1 and the output of the readout, which is
assumed to encode p(x;+1|y1;). B) Results. We compared
the predictive performance of the network against a low-error-
bound Markovian model. The heatmap plots the effect size of
the difference of BCE between the network and the baseline
model as Cohen’s d. Negative values indicate that the RNN
had a lower error rate (i.e., better performance) than the base-
line. Effect sizes are plotted for different observation noise
levels (x-axis) and network sizes (y-axis).

12 dimensions. The dataset was partitioned into training (52
compositions), validation (7), and test (15) subsets.

Each RNN consisted of a single-layer gated recurrent unit
(GRU) network (Cho et al., 2014). Training was performed us-
ing the Adam optimizer with a learning rate of 1 = 0.02. Train-
ing subset input y;,, and target x;,; sequences where split-
ted into 512 tokens chunks and arranged in 512 sequence
batches. To avoid overfitting, we measured the performance
of the network on the validation set every 100 batches; training
was early-stopped if the error (i.e., BCE) in the validation set
was lower or equal than a cutoff value 8 = ti4ing — Orrainings
where ty4ing @and Oy rqining are the mean and standard devia-
tion of the BCE in the training set. After training, performance
was measured using the complete testing set.

Results

The RNNs learned to denoise the observations better than the
baseline model across all network sizes and noise levels, in-
dicating that they successfully learned to integrate information
over time to infer the current token more accurately.

The linear readouts of the RNNs consistently outperformed
the baseline model (Figure 1B), demonstrating that the RNNs
had implicitly learned to predict the next token. The results
indicate that predictions may emerge as a natural byproduct
of optimization in networks trained solely on perception.

Conclusion

Perceptual systems need to infer the content of the sensory
world from noisy, ambiguous, and incomplete sensory sig-
nals. Mounting evidence from behavioral and neurophysio-
logical studies suggests that this inference process is pow-
ered by Bayesian believe updating, where prior information is
compressed into a predictive distribution that continuously up-
dated according the sensory inputs to conform our perception
of reality. Previous authors have suggested that this believe
updating is the optimal strategy to to denoise the sensory in-
puts during perceptual inference (Friston, 2003). However,
this point has so-far been mathematically derived for systems
that have very specific evolution rules; namely, linear Gaus-
sian dynamic Markovian systems and their generalizations.

Here we showed that RNNs optimized to infer latent states
that evolved via a generative model of a much greater com-
plexity also make use of predictions. Although real-world sig-
nals such as human speech are often more complex, Bach’s
compositions show a rich hierarchical structure that can be
non-trivially used to form expectations about future states.

The results provide computational support for the predic-
tive processing framework and offer valuable insights into how
both artificial and biological systems might use predictions to
navigate an environment filled with uncertainty.
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