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Abstract1

Convolutional Neural Networks (CNNs) have demon-2

strated remarkable success in image recognition and ex-3

hibit conceptual similarities to the primate ventral visual4

pathway. Adding recurrence opens the door to exploring5

temporal dynamics and investigating mechanisms un-6

derlying recognition robustness, attentional modulation,7

and rhythmic perception phenomena. However, model-8

ing spatiotemporal dynamics of biological vision using9

CNN-based architectures remains challenging. Incorpo-10

rating functionally beneficial recurrence, capturing bio-11

logically plausible temporal phenomena such as adapta-12

tion and subadditive temporal summation, and maintain-13

ing topographic organization aligned with cortical struc-14

ture require significant computational considerations. Al-15

though recent advances have incorporated neurobiolog-16

ical constraints, the field lacks accessible tools for ef-17

ficiently integrating, testing, and comparing these ap-18

proaches. Here, we introduce DynVision, a modular tool-19

box for constructing and evaluating recurrent convolu-20

tional neural networks (RCNNs) with biologically inspired21

dynamics. Our approach facilitates the incorporation of22

key visual cortex properties, including realistic recurrent23

architectures, activity evolution governed by dynamical24

systems equations, and structured connectivity reflect-25

ing cortical arrangements, while maintaining computa-26

tional efficiency. We demonstrate the framework’s util-27

ity through systematic analysis of emergent neural dy-28

namics, highlighting how different biologically motivated29

modifications shape response patterns characteristic of30

cortical recordings.31
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Introduction33

The primate visual system is characterized by abundant re-34

current connections (van Bergen & Kriegeskorte, 2020). In35

the ventral visual stream, lateral recurrent connections exist36

amongst neurons within visual cortical regions and feedback37

connections go from higher areas like V4 back to lower ones38

such as V1. These connections play a crucial role in the sys-39

tem’s ability to integrate information over time and recognize40

objects under diverse viewing conditions.41

Many researchers have attempted to integrate these con-42

nections into convolutional neural networks (Lindsay, 2021).43

Although studies on recurrent convolutional neural networks44

(RCNNs) have found benefits of adding recurrence (Kietz-45

mann et al., 2019; Spoerer et al., 2020; Kar et al., 2019), oth-46

ers have had mixed results (Maniquet et al., 2024; Nayebi et47

al., 2022; Lindsay et al., 2022). These studies predominantly48

use discrete-time recurrent models, usually unrolled for only49

a handful of time steps. This coarse-grain approximation can-50

not capture the full complexity of visual dynamics and conflicts51

with traditional computational neuroscience methods, which52

treat neural circuits as continuous dynamical systems.53

Using continuous-time models in machine learning poses54

engineering challenges. Neural dynamics require small simu-55

lation step sizes (∼ 1 millisecond), necessitating tens to hun-56

dreds of time steps to mimic visual system responses. This57

creates large computational graphs when training with back-58

propagation through time. Here, inspired by recent work com-59

bining continuous-time differential equations with deep convo-60

lutional neural networks (Soo et al., 2024; Heeger & Mackey,61

2019; Lindsay et al., 2020), we build a toolbox to make such62

models more accessible.63

DynVision implements numerical ODE solvers and hetero-64

geneous delays for different connection types to build RCNNs65

with precise and realistic temporal dynamics. It allows many66

different forms of recurrent connections with biologically in-67

spired options that enhance efficiency, while providing con-68

trol over parameters governing dynamics within and across69

regions.70

Methods71

Toolbox Design72

The ”DynVision” toolbox emphasizes modularity, adaptability,73

and reusability to provide an efficient RCNN modeling envi-74

ronment. It leverages PyTorch for tensor operations, PyTorch75

Lightning for training procedures, FFCV for optimized data76

loading, Snakemake for workflow management, and Pydan-77

tic classes and YAML files for parameter handling.78

Biologically-inspired Model Components79

• Recurrent Connections: A module combines feedforward80

2D convolution with recurrency operations and handles hid-81

den state storage with variable time delays. We include self-82

recurrence (Kietzmann et al., 2019), full recurrence (Liang83

& Hu, 2015), and pointdepthwise recurrence using depth-84

wise separable convolutions (Chollet, 2017) that map onto85

lateral recurrence structure in the visual system (Fig. 1).86

We also introduce local recurrence that captures 2-D corti-87

cal topology by arranging units on grids inspired by cortical88

organization (Ohki et al., 2006; Qian et al., 2024).89



• Skip and Feedback Connections: These link units across90

layers and time steps. The toolbox offers functionality to91

auto-adapt signal transformations during the first forward92

pass by just defining source and target layers.93

• Dynamical Systems Description: Continuous-time dy-94

namics are realized via numerical ODE solvers (Euler95

method) that evolve layer activity on timescale τ based on96

previous activity (Fig.2). This provides independent control97

over temporal precision (dt) and time constants (τ).98

• Biological Unrolling with Heterogeneous Delays: The99

framework allows separate time delays for feedforward100

(∆FF ) and recurrent connections (∆RC), enabling system-101

atic evaluation of different temporal delays on network dy-102

namics (including realizing engineering time with ∆FF = 0).103

• Additional components include retina-inspired prepro-104

cessing, activity regularization via energy loss functions105

Butkus et al. (2024), supralinear activation functions Rubin106

et al. (2015); Lindsay et al. (2019), flexible execution order107

of layer operations and activity recording, reference model108

implementations, extensive logging and analytics, portabil-109

ity and seamless scalability from CPU to GPU to multi-GPU,110

...111

Figure 1: Four types of kernel convolutions used to realize
recurrence: self, full, depthwise, pointwise. Each shows a 3D
tensor representing layer output at two time steps ∆RC apart.

A)

B)
r(t) = r(t −dt)+ dt

τ
(−r(t −dt)+Φ[ f (t −dt,r)])

Figure 2: Dynamical systems formulation. A) Differential
equation describing network activity evolution. B) Numerical
Forward Euler method implementation for activity r.

Results112

Benchmarking113

We retrained CORNet-RT (Schrimpf et al., 2020) on Ima-114

geNette (10-class ImageNet subset), comparing the origi-115

nal implementation with our toolbox integration. The toolbox116

achieved a 52% speedup (8.86s vs 13.51s per epoch) on a117

NVIDIA A100 GPU.118

Investigating Temporal Dynamics119

We demonstrate the toolbox’s capabilities to systematically in-120

vestigate biologically plausible temporal dynamics by exam-121

ining how different recurrency types affect neural response122

patterns (Fig. 3). Following Groen et al. (2022), which doc-123

umented cortical responses to stimuli of varying contrast, du-124

ration, and interval spacing, we evaluate time courses of layer125

activations as proxies for ECoG measurements.126

Models trained on CIFAR100 with different recurrence types127

exhibit distinct temporal characteristics. All models demon-128

strate stability over extended periods and reasonable baseline129

null response. Models with full recurrence show response pat-130

terns most similar to cortical recordings, including subadditive131

temporal summation and adaptation effects.132

Figure 3: Population temporal dynamics of a four-layer RCNN
model trained on CIFAR100 with 20 timesteps, tested on 60
steps with stimulus presented for steps 1-26. Accuracies:
full 71.7%, self 64.7%, pointdepthwise 65.3%, depthpointwise
66.71.7%

Summary and Continued Development133

We introduce DynVision, a toolbox for building dynamical134

systems-based RCNNs, and systematic explorations of how135

biologically-inspired architectural choices influence temporal136

dynamics. Capturing fine-grained temporal dynamics may be137

necessary for creating models that use recurrence similarly to138

the brain.139

Future developments include excitatory/inhibitory neuron140

separation, local field potential modeling, and extended sup-141

port for in silico experiments. By lowering barriers to working142

with compute-intensive, DynVision aims to accelerate discov-143

eries about neural mechanisms underlying perception.144

Code availability145

https://github.com/Lindsay-Lab/DynVision146

https://github.com/Lindsay-Lab/DynVision
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