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Abstract
A central premise of basic neuroscience research is that
insights about the healthy brain may eventually inform
treatments for neurological and neuropsychiatric disor-
ders. While much of the recent progress in systems neu-
roscience has relied on densely sampled, high spatial
resolution measures of neural activity (like spikes), most
neural recordings available in humans are field potentials.
Consequently, bridging the divide between animal and
human neuroscience requires understanding how neu-
ral representations compare in those different types of
data. To fill this gap, we analyzed a dataset with estab-
lished spiking representations of visual memory to an-
swer a simple question: would the same inferences about
the neural representations supporting memory have been
made if measures were limited to field potentials? Using
spike and local field potential (LFP) data simultaneously
recorded in inferotemporal cortex (ITC) of four macaque
monkeys performing a visual memory task, we show that
the neural representations of three variables are aligned
across spikes and high-gamma activity: memory, memo-
rability, and contrast. In addition, we show that condition-
specific, and in some cases image-specific, neural rep-
resentations are matched across both measures. These
results suggest that data can be meaningfully compared
across animals and humans in support of translational
work, such as in developing brain computer interfaces
and closed-loop therapeutic stimulation devices.
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Introduction
Over the last decade, technological advances have allowed
systems neuroscience to make notable progress in under-
standing how neural activity drives behavior (Urai, Doiron,
Leifer, & Churchland, 2022). Simultaneously, the field of hu-
man neuroscience has expanded, with researchers recording
directly from the human brain to understand how it operates
in health and disease (Jacobs & Kahana, 2010; Chang, 2015;
Parvizi & Kastner, 2018). However, these two advances have
largely relied on different types of neural signals, presenting a
challenge to taking insights from one space to the other. In an-
imals, insights most often rely on access to densely sampled,
high spatial resolution measures of neural activity (spikes); in
humans, most recordings, especially in therapeutic contexts,
are field potentials. Thus, bridging the gap between animal
and human neuroscience requires understanding how the na-
ture of neural representations compares in spikes versus field
potentials.

Previous studies have drawn connections between high
gamma power (HG) in the LFP and spiking activity (Ray &
Maunsell, 2011; Liu & Newsome, 2006; Kreiman et al., 2006)
or HG and behavior (Henin et al., 2019; Sederberg et al.,
2007), but largely failed to connect all three. This leaves open
whether connections made in animal studies between spikes
and behavior may be possible when e.g., recording from a
human patient. In this study, we demonstrate that neural rep-
resentations of visual memory are highly aligned in spikes and
HG. Specifically, we show alignment for three variables known
to influence spiking population response magnitude in infer-
otemporal cortex (ITC) to drive visual memory behavior: delay
(Meyer & Rust, 2018), memorability (Jaegle et al., 2019), and
image contrast (Mehrpour, Meyer, Simoncelli, & Rust, 2021).
Excitingly, we also show that HG directly predicts memory be-
havior as well as spikes, suggesting that many insights about
the neural representations that drive behavior from spikes may
translate directly to human neuroscience, at least in the con-
text of the magnitude coding schemes we analyze here.

Methods
Task
Neural data were recorded as four macaques (M1-M4) viewed
a sequence of natural images and saccaded to a target to in-
dicate whether each was novel or repeated. Images were ran-
domly sampled from the internet (Meyer & Rust, 2018) and as-
signed memorability scores using MemNet (Khosla, Raju, Tor-
ralba, & Oliva, 2015). Each image appeared for 400 (M1/M2)
or 500 (M3/M4) ms, followed by two choice targets. Images
appeared exactly twice, once as novel and as repeated. The
number of intervening images (n-back) was systematically
varied. Two animals (M1/M2) also performed a variant of the
task in which images appeared at either a high or low contrast
(Mehrpour et al., 2021).

Neural Data
Wideband signals were recorded from ITC with a laminar 24-
channel U-probe. Neurons were identified by manually spike
sorting offline. LFPs were extracted by low-pass filtering the
voltage data to below 200 Hz and removing 60 Hz noise.
Spectral information was extracted from the LFPs using Mor-
let wavelet decomposition and baseline subtracting the ampli-
tude for each estimated frequency. High gamma was defined
as the average amplitude in 50-150 Hz for a time window de-
fined to match the spikes. Behavioral predictions were made
by training a Fisher Linear Discriminant decoder to distinguish
novel from repeated images based on reductions in firing rate.
The classifier was rescaled to match behavior using previously
published methods (Meyer & Rust, 2018).
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Figure 1: Comparison of neural representations in spikes (top row) and HG (bottom row) in an example animal. A-B) Dynamics
of memory signals, reflected as repetition suppression (RS), C-D) RS in individual units or channels, E-F) RS as a function of
n-back, G-H) Response magnitude as a function of memorability, I-J) Dynamics of contrast modulation.

Results
Spikes and HG are well-aligned
Memory A memory signal in ITC is thought to be repeti-
tion suppression: the tendency for ITC’s population response
magnitude to be reduced the second time an image is pre-
sented compared to the first (Figure 1A). Like spikes, HG
showed robust repetition suppression that emerged after 100
ms (Figure 1B) and was observed across most individual
units (Figure 1C) and channels (Figure 1D). Animals with less
spike repetition suppression also had less HG repetition sup-
pression, further suggesting that HG captures the underly-
ing population spiking activity. Repetition suppression in both
spikes (Figure 1E) and HG (Figure 1F) tended to decrease
as the number of intervening images between the novel and
repeated presentation (n-back) increased.
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Figure 2: HG predicts memory as well as spikes. A) Behavior
plotted with neural predictions from spikes (red) and HG (blue)
for one monkey (solid point in B). B) Error between neural pre-
dictions and behavior across all monkeys.

Memorability Some images are consistently better remem-
bered than others, an intrinsic property known as memorability
(Khosla et al., 2015). Spike population response magnitude in
ITC has been shown to correlate with memorability (Jaegle

et al., 2019) (Figure 1G, r = 0.80). Strikingly, HG also corre-
lated strongly with memorability (Figure 1H, r = 0.78). Again,
animals with smaller memorability correlations in spikes also
had smaller correlations in HG, and the dynamics of the HG
response closely matched that in the spikes.

Contrast Similar to other studies of spike and HG contrast
modulation (Ray & Maunsell, 2011) in earlier visual areas,
we found that spike population magnitude (Figure 1I) and HG
(Figure 1J) in ITC were similarly modulated by image contrast.
Once again, animals with larger effects of contrast in spikes
showed larger effects in HG.

Neural representations in spikes and HG both
predict visual memory behavior

Memory performance tends to decrease as n-back increases
(Figure 2A). To directly link neural representations to memory
behavior, we trained a cross-validated linear decoder to pre-
dict memory performance. We replicated previous work show-
ing that the decoder trained on spike data can predict mem-
ory (Meyer & Rust, 2018) and extended this to show that HG
representations are also predictive of behavior (Figure 2A).
Across monkeys, decoders trained on HG predicted behavior
as well as those trained on spikes (Figure 2B).

Conclusions

The same inferences about the neural mechanisms of visual
memory would have been made with HG or spikes. In fact, HG
and spikes are so strongly aligned that HG directly predicts
memory behavior as well as spikes (Figure 2). These findings
suggest that variables that influence overall population firing
(like memory, memorability, and contrast) may be good targets
for observation in LFPs and supports the hope that insights
from animal studies may translate to human recordings, where
spike recordings are often absent or limited.
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