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Abstract

Collaboration helps humans surmount individual cog-
nitive limitations by distributing information over many
minds. However, figuring out when and how to collab-
orate is not trivial. This study examines whether dyads
split up information in a collaborative visual working
memory task when doing so improves performance. Par-
ticipants (N=356) memorized grids of 4, 16, or 36 images
both alone and with a partner. We used a visual working
memory model to estimate how much dyads would ben-
efit from splitting up a grid of images, rather than each
memorizing the grid independently. Our model predicts
that participants should split up grids that are neither
too easy nor too difficult to benefit from collaboration.
Indeed, participants tacitly adopted conventions to split
up medium and large grids—and were more accurate in
these conditions when they worked together than when
they acted alone—but not small grids where individual
performance was already at ceiling. Our work provides
a first step to understand how decisions about when and
how to collaborate are shaped by the adaptive use of cog-
nitive resources.
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Introduction

Individuals have limited capacity to store, process and uti-
lize information. Collaboration provides a means for humans
to surmount these limitations by distributing information over
many minds (Griffiths, 2020; Vélez, Christian, Hardy, Thomp-
son, & Griffiths, 2023). There is a rich literature that suggests
that memories are not stored solely within individual minds,
but are also maintained through social interactions (Wegner,
Erber, & Raymond, 1991; Coman, Momennejad, Drach, &
Geana, 2016; Momennejad, Duker, & Coman, 2019). To
reap the benefits of distributing information, it is important to
form a reusable convention to determine who keeps track of
what (Lewis, 2008). For example, one member of a house-
hold might keep track of when the plants need watering, while
the other might remember to put out the trash (Wegner et al.,
1991). How do people arrive at conventions to distribute infor-
mation in memory, and when is it beneficial to do so?

Prior work has largely examined how people adopt such
conventions in the face of external constraints, such as in
search tasks where each participant can check a limited
number of locations (Goldstone, Andrade-Lotero, Hawkins, &
Roberts, 2024; Andrade-Lotero & Goldstone, 2021). Prior
studies have found that people are more likely to form sta-
ble conventions when the payoffs at stake are high (Hawkins
& Goldstone, 2016), which suggests that people may decide
whether to collaborate by weighing the benefits of doing so.

However, it is an open question whether people are
also sensitive to internal cognitive constraints when decid-
ing whether and how to split up tasks. In many domains, the
amount of cognitive effort people are willing to spend depends

on the potential benefit (Lieder & Griffiths, 2019). If this is the
case, participants may be less likely to collaborate when tasks
are so easy that performance is high even if people act alone,
or so hard that performance is low even if people collaborate.

Methods

Participants: To test this prediction, participants (N = 356)
completed a visual working memory task both alone and with
a partner through Prolific. An additional 534 participants were
excluded because they or their partner dropped out before
completing at least 50% of trials, following preregistered ex-
clusion criteria (N = 534 excluded; preregistration available
at https://aspredicted.org/p624-s347.pdf). This at-
trition rate is typical of online multiplayer studies and did not
differ by condition (x*(2) = 2.3,p = .3).

Procedure: Participants were assigned to three between-
subjects conditions where studied grids of 4, 16, or 36 im-
ages. Each square on the grid contained an image of a
face, house, limb, or object selected from the stimulus set
in Stigliani, Weiner, and Grill-Spector (2015). To track which
images participants studied, we covered each image with a
gray square that participants could remove by hovering their
mouse over the square. Each trial consisted of an encod-
ing phase where participants studied the grid for 10s and a
retrieval phase where participants were asked to report the
image that was hidden behind a randomly-cued square.

Each participant completed this task both alone (solo trials)
and with another participant (dyadic trials). Participants were
allowed 2 min. to communicate via chat before being shown
task instructions, which enabled participants to build rapport
without explicitly discussing strategy. In dyadic trials, partici-
pants saw an orange border that indicated which image their
partner was currently studying. Thus, participants could tacitly
arrive at a convention to split up the grid by avoiding squares
that their partner studied, e.g., by sticking to the left side of
the grid while their partner studied the right. Participants were
rewarded for their own responses in solo trials and for the first
response submitted in dyadic trials. Participants completed 20
solo trials, 40 dyadic trials, and 6 catch trials where all squares
contained the same image.

Computational model: To estimate the benefits of collabo-
ration, we used a visual working memory model adapted from
Suchow and Giriffiths (2016). The model assumes that partic-
ipants have a fixed resource budget of N discrete units, which
they must allocate across K stimuli arranged on a grid. When
prompted to recall one of the K items, the probability of suc-
cessful recall depends on the amount of resource allocated to
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that item, following a concave function f(Q) = 5 + s

If the agent plays alone or ignores the presence of a partner,
the optimal strategy is to distribute resources equally across
all stimuli. In this case, each stimulus receives N/K units.
In contrast, if the agent coordinates with a partner using a
shared convention—such as each remembering only half the
stimuli—they can allocate their N units more narrowly across
K /2 stimuli, assigning N/(K/2) = 2N /K units to each. The



benefit of collaboration is then the difference in recall proba-
bility between these two cases, f(&¥) — ().

Figure 1A shows the benefit of collaborating at varying grid
sizes, using a more general form of this model that allows
for individual participants to differ in their resource capacity
and thus split the grid non-equally where the participant with
a larger memory capacity takes on a larger portion of the grid.
When K is small, both f(N/K) and f(2N/K) are close to 1,
so the difference is small. As K increases, both probabilities
decrease, but f(2N/K) decreases slower, leading to a larger
benefit. However, when K becomes very large, both terms
approach 0, and the benefit again diminishes. Thus, collabo-
ration brings the greatest benefits at intermediate grid sizes.

To apply this model to our task, we estimated each player’s
resource capacity, N, based on their mouse-click and recall
behavior in solo trials. We fit the model using a version
of simulation-based inference (Russek, Callaway, & Giriffiths,
2024; Rmus, Pan, Xia, & Collins, 2024), training GRUs to es-
timate N from behavior on simulated data, and then applying
the trained network to participant’s actual data.

Results

Consistent with model predictions, participants benefited the
most from collaborating in intermediate grid sizes (dyadic vs.
solo performance in grid size 16: #(237.90) = —4.28,p <
0.001; Fig. 1B). Conversely, we saw no benefit for small grids,
where solo performance was already at ceiling (¢(172.50) =
—0.56,p = 0.58). Interestingly, we also found that partici-
pants benefited from collaborating in the largest grids (dyadic
vs. solo performance in grid size 36: 1(244.32) = —3.66,p <
0.001), which suggests that our model may not have been
perfectly calibrated to human performance.

To measure whether dyads split up the grid, we mea-
sured how their movement patterns differed between solo and
dyadic trials. Our measure of collaboration, spatial overlap,
reflects how much time participants spent studying the same
images. We derived a vector representation of each player
i’'s time allocation, t;, by measuring the proportion of the 10-
second encoding phase that they spent hovering over each
tile k. Spatial overlap measures how similar player 1 and 2’s
time allocations are to each other: Y M Because
spatial overlap can vary based on grid size, we computed rel-
ative spatial overlap by taking the ratio of each dyad’s aver-
age spatial overlap in solo and dyadic trials. If participants
split up the grid, we would expect to see less spatial over-
lap in dyadic trials (relative spatial overlap < 1). Consistent
with this prediction, participants’ spatial overlap dropped in
dyadic trials for medium and large grid sizes (mean rel. spatial
overlap in grid size 16: 0.81, grid size 36: 0.80; grid size 16
vs. 36: 1(118.50) = 0.08, p = 0.94)—that is, in precisely the
conditions where participants benefited from doing the task
together—but not for small grid sizes (mean in grid size 4:
1.24; grid size 4 vs. 16: 1(65.49) = 2.87, p = 0.005).
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Figure 1: A: Collaboration benefit, operationalized as the
model-predicted difference in performance if agents divide
grids optimally vs. each memorize the grid independently.
B: Average human performance in solo and dyadic trials.
Dashed line shows chance performance. C. Two sample
dyads with low vs. high spatial overlap in dyadic trials;
heatmaps show average time allocations t; across all dyadic
trials. D. Average relative spatial overlap (dyadic/solo overlap)
by grid size. Error bars denote standard error of the mean.

Conclusion

Decisions about when and how to collaborate are decisions
about how to best allocate cognitive resources. We examined
the extent to which these decisions are adaptive: do people
collaborate more when collaboration is more beneficial? We
found that participants collaborated more on a visual work-
ing memory task when the task was too hard to successfully
memorize the stimuli on one’s own, supporting the idea that
decisions about collaboration involve the adaptive use of cog-
nitive resources. However, participants even collaborated in
tasks that were so difficult that our model predicted no bene-
fit to collaboration. Since people actually benefited from col-
laboration in these settings, these results suggest that our
model may not have been perfectly calibrated to human per-
formance. As we continue this work, we plan to refine our
model of human performance to better understand when two
minds are better than one.
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